Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»Medical»Huntington’s disease symptoms reduced by new peptide-polymer therapy
Medical

Huntington’s disease symptoms reduced by new peptide-polymer therapy

November 4, 2024No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Huntington’s disease symptoms reduced by new peptide-polymer therapy
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

Scientists at Northwestern and Case Western Reserve universities have developed the first polymer-based therapeutic for Huntington’s disease, an incurable, debilitating illness that causes nerve cells to break down in the brain.

Patients with Huntington’s disease have a genetic mutation that triggers proteins to misfold and clump together in the brain. These clumps interfere with cell function and eventually lead to cell death. As the disease progresses, patients lose the ability to talk, walk, swallow and concentrate. Most patients die within 10 to 20 years after symptoms first appear.

The new treatment leverages peptide-brush polymers, which act as a shield to prevent proteins from binding to one another. In studies in mice, the treatment successfully rescued neurons to reverse symptoms. The treated mice also experienced no significant side effects, confirming the therapy is nontoxic and well tolerated.

Although the treatment needs further testing, the researchers imagine it potentially someday could be administered as a once-weekly injection to delay disease onset or reduce symptoms in patients with the genetic mutation.

The study will be published on Friday (Nov. 1), in the journal Science Advances.

“Huntington’s is a horrific, insidious disease,” said Northwestern’s Nathan Gianneschi, who led the polymer therapeutic development. “If you have this genetic mutation, you will get Huntington’s disease. It’s unavoidable; there’s no way out. There is no real treatment for stopping or reversing the disease, and there is no cure. These patients really need help. So, we started thinking about a new way to address this disease. The misfolded proteins interact and aggregate. We’ve developed a polymer that can fight those interactions.”

See also  Nanoparticle treatment combined with radiation therapy significantly improves glioblastoma survival in mice

Gianneschi is the Jacob and Rosaline Cohn Professor of Chemistry at Northwestern’s Weinberg College of Arts and Sciences and professor of materials science and engineering and biomedical engineering at Northwestern’s McCormick School of Engineering as well as in Pharmacology at Feinberg School of Medicine. He also is a member of the International Institute of Nanotechnology. Gianneschi co-led the study with Xin Qi, the Jeanette M. and Joseph S. Silber Professor of Brain Sciences and co-director of the Center for Mitochondrial Research and Therapeutics, at Case Western Reserve University.

Promising peptide

The new study builds on previous work from Qi’s laboratory at Case Western Reserve. In 2016, Qi and her team identified a protein (valosin-containing protein or VCP) that abnormally binds to the mutant Huntington protein, causing protein aggregates. These aggregates accumulate within a cell’s mitochondria, an organelle that generates the energy needed to power a cell’s biochemical reactions. Without functioning mitochondria, the cells become dysfunctional and then self-destruct. 

As part of that study, Qi also uncovered a naturally occurring peptide that disrupts the interaction between the VCP and the mutant Huntington protein. In cells exposed to the peptide, both the VCP and mutant Huntington protein bound to the peptide -; instead of each other.

Qi’s team identified a peptide that comes from the mutant protein itself and basically controls the protein-protein interface. That peptide inhibited mitochondrial death, so it showed promise.”

Nathan Gianneschi, Northwestern University

Pulling apart proteins like Velcro

But the peptide, by itself, faced several limitations. Because they are easily broken down by enzymes, peptides have a short lifespan in the body and often have difficulty effectively entering cells. For the peptide to inhibit Huntington’s disease, it needs to cross the blood-brain barrier in large enough quantities to prevent large-scale protein aggregation. 

See also  Boosting curcumin's absorption and effectiveness for disease prevention and therapy

“The peptide has a very small footprint with respect to the protein interfaces,” Gianneschi said. “The proteins stick to each other like Velcro. In this analogy, one protein has hooks and the other has loops. The peptide, on its own, is like trying to undo a patch of Velcro by pulling apart one hook and loop at a time. By the time you get to the bottom of the patch, the top has already come back together and resealed. We needed something big enough to disrupt the entire interface.”

To overcome these obstacles, Gianneschi and his team developed a biocompatible polymer that displays multiple copies of the active peptide. The new structure has a polymer backbone with peptides attached like branches. Not only does the structure protect the peptides from destructive enzymes, it also helps them cross the blood-brain barrier and enter cells.

Experimental results

In laboratory experiments, Gianneschi and his team injected the protein-like polymer into a mouse model of Huntington’s disease. The polymers stayed in the body 2,000 times longer than traditional peptides. In biochemical and neuropathological examinations, the researchers found the treatment prevented mitochondrial fragmentation to preserve the health of brain cells. According to Gianneschi, the mice with Huntington’s disease also lived longer and behaved more like normal mice.

“In one study, the mice are examined in an open field test,” Gianneschi said. “In the animals with Huntington’s, as the disease progresses, they stay along the edges of the box. Whereas normal animals cross back and forth to explore the space. The treated animals with Huntington’s disease started to do the same thing. It’s quite compelling when you see animals behave more normally than they would otherwise.”

See also  Nanomachines loaded with wine ingredients overcome gene therapy challenges

Next, Gianneschi will continue to optimize the polymer, with plans to explore its use in other neurodegenerative diseases.

“My childhood friend was diagnosed with Huntington’s at age 18 through a genetic test,” Gianneschi said. “He’s now in an assisted living facility because he needs 24-hour, full-time care. I remain highly motivated -; both personally and scientifically -; to continue traveling down the path.”

Source:

Journal reference:

Choi, W., et al. (2024) Proteomimetic polymer blocks mitochondrial damage, rescues Huntington’s neurons, and slows onset of neuropathology in vivo. Science Advances. doi.org/10.1126/sciadv.ado8307.

Source link

Disease Huntingtons peptidepolymer reduced symptoms Therapy
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Nanoparticle treatment combined with radiation therapy significantly improves glioblastoma survival in mice

May 3, 2025

Dual-mode MRI nanoprobe mimics biological processes to pinpoint early fibrosis in fatty liver disease

May 1, 2025

Extracellular vesicles as a cellular tracking tool could yield new therapies for polycystic kidney disease

April 14, 2025

DNA-loaded lipid nanoparticles are poised to bring gene therapy to common chronic diseases

April 1, 2025

Nanoparticle immune therapy shows potential to halt pancreatic cancer spread

March 16, 2025

Combined organ-specific mRNA and lipid nanoparticle therapy could repair damaged lungs

March 4, 2025

Comments are closed.

Top Articles
News

Japanese researchers develop AI-nanopore platform for accurate, rapid COVID-19 testing

News

Research team reveals why water moisture affects quantum crystals

News

Physicists Demonstrate How Sound Can Cross the Vacuum

Editors Picks

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Unraveling Nanotechnology’s Promising Role in Inflammatory Bowel Disease Management

August 9, 2023

New method to synthesize amorphous metal-organic frameworks and coordination polymers

July 21, 2024

NMR-guided optimization of lipid nanoparticles for enhanced siRNA delivery

October 9, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel