Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Development of organic semiconductors featuring ultrafast electrons
News

Development of organic semiconductors featuring ultrafast electrons

April 29, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Development of organic semiconductors featuring ultrafast electrons
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Diagram depicting the chemical structure of a conducting two-dimensional polymer (C2P-9) with pendant groups and the coexistence of ultrafast electrons after p-type doping. Credit: POSTECH

Scientists have created conducting two-dimensional polymers exhibiting electron mobility comparable to graphene. Their research has been featured in the online edition of Chem.

Graphene, called a “dream material,” exhibits electron mobility 140 times faster than silicon and a strength 200 times that of steel. However, its lack of a band gap, which is essential for regulating electrical current, prevents its use as a semiconductor. Researchers have been actively exploring various approaches to develop a semiconductor that shows graphene’s exceptional properties.

One promising approach is the development of conducting polymers. Researchers are exploring conducting polymers with a fused aromatic backbone, mimicking the chemical structure of graphene, aiming to attain exceptional properties. Yet, challenges arise during synthesis due to the interlayer stacking between growth intermediates, hindering proper polymer growth.

In this research, the team consisting of Professors Kimoon Kim and Ji Hoon Shim, Dr. Yeonsang Lee from the Department of Chemistry at Pohang University of Science and Technology (POSTECH) and Professor Jun Sung Kim from POSTECH’s Department of Physics and the Center for Artificial Low Dimensional Electronic Systems at the Institute for Basic Science, utilized triazacoronene, possessing a chemical structure similar to graphene, and introduced bulky pendant functional groups to its periphery.

By introducing steric hindrance from these pendant groups, the team successfully suppressed the stacking of two-dimensional polymer intermediates during the polymerization of triazacoronene monomers. This led to increased solubility of the intermediates and facilitated the synthesis of two-dimensional polymers with higher degree of polymerization and fewer defects, resulting in outstanding electrical conductivity after p-type doping.

See also  Electron Microscopy in Industry: QC and Failure Analysis

Remarkably, magnetotransport measurements revealed that coherent multi-carrier transport with finite n-type carriers show exceptionally high mobility over 3,200 cm2 V−1 s−1 and long phase coherence length surpassing 100 nm, in stark contrast to hole-carrier transport with 25,000 times lower mobility at low temperatures. This dramatic disparity between electron and hole-carrier transport is attributed to spatially separated electronic states near the Fermi level, which consists of dispersive and flat bands.

Professor Kimoon Kim from POSTECH expressed the significance of the research by saying, “We’ve achieved a breakthrough in addressing the low electron mobility, a major challenge in organic semiconductors, and in controlling the conduction pathways for electrons and holes at the molecular level.”

“This research shed light on enhancing material performance across various industrial applications including batteries and catalysts.”

Provided by
Pohang University of Science and Technology



Source link

development Electrons featuring Organic semiconductors Ultrafast
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Comments are closed.

Top Articles
News

Advanced Optical Emission Spectroscopy in Plasma Systems

News

Ancient art meets nanotechnology in nanoscale goldbeating

News

A peptide that can cross the blood-brain barrier

Editors Picks

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Separating molecules requires a lot of energy. This nanoporous, heat-resistant membrane could change that

October 11, 2023

New method for disinfecting surfaces and hands in hospitals makes transmission paths visible

August 10, 2024

Nanowires produce localized highly alkaline microenvironments to kill bacteria

March 23, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel