Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Visualizing electron flow motivates new nanoscale devices inspired by airplane wings
News

Visualizing electron flow motivates new nanoscale devices inspired by airplane wings

September 25, 2023No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Visualizing electron flow motivates new nanoscale devices inspired by airplane wings
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Using an imaging technique, the researchers examined the fluid-like properties of electronic current (an incompressible, irrotational fluid) through nanoscale devices. Credit: UCR/QMO Lab

A study showing how electrons flow around sharp bends, such as those found in integrated circuits, has the potential to improve how these circuits, commonly used in electronic and optoelectronic devices, are designed.

It has been known theoretically for about 80 years that when electrons travel around bends, they tend to heat up because their flow lines get squished locally. Until now, however, no one had measured the heat, for which imaging the flow lines is first needed.

The research team, led by Nathaniel M. Gabor at the University of California, Riverside, imaged streamlines of electric current by designing an “electrofoil,” a new type of device that allows for the contortion, compression, and expansion of streamlines of electric currents in the same way airplane wings contort, compress, and expand the flow of air.

“Electric charge moves similarly to how air flows over the surface of an airplane wing,” said Gabor, a professor of physics and astronomy. “While it is easy to image the flow of air by using, say, streams of smoke or steam in a wind tunnel, as often seen in car commercials, imaging the streamlines of electric currents is far more difficult.”

Gabor said the team combined laser imaging with novel light-sensitive devices to come up with the first images of photocurrent streamlines through a working device. A photocurrent is an electric current induced by the action of light.

“If you know how the electrons are flowing you can then know how to prevent them causing deleterious effects, such as heating up the circuit,” Gabor said. “With our technique, you can now assess exactly where and how the electrons are flowing, giving us a powerful tool to visualize, characterize, and measure charge flow in optoelectronic devices.”

See also  How Are Nanoscale Approaches Changing the Vaccine Game?

The research paper is titled “Mapping the intrinsic photocurrent streamlines through micromagnetic heterostructure devices” and appears in the Proceedings of the National Academy of Sciences.

Gabor explained that when electrons gain kinetic energy they heat up. Ultimately, they heat the material around them, such as wires that can risk melting.

“If you get a heat spike in your computer, your circuits start to die,” he said. “This is why when our computers overheat, they shut off. It’s to protect circuits that could get damaged because of all the heat being dissipated in the metals.”

Electrons take flight at the nanoscale
The researchers engineered micromagnetic wing shaped devices, called electrofoils, which allowed them to precisely contort, compress, and decompress flowlines of electronic charge. Credit: UCR/QMO Lab

Gabor’s team designed the electrofoils in the lab as little wing shapes in nanoscale devices that make the electrons flow around them, similar to how air molecules flow around an airplane wing.

“We wanted a shape that could give us different rates of turning, something with a continuous curvature to it,” Gabor said.

“We took inspiration from airplane wings, which have a gradual curve. We forced the current to flow around the electrofoil, which offers different angles of flight. The sharper the angle, the more the compression of the flow lines. In more and more materials, we are starting to find that electrons behave like liquids. So rather than design devices based on, say, electrical resistance, we can adopt an approach with plumbing in mind and design pipelines for electrons to flow through.”

In their experiments, Gabor and his colleagues used a microscopy method that employs a uniform rotating magnetic field to image photocurrent streamlines through ultrathin devices made of a layer of platinum on yttrium iron garnet, or YIG. YIG is an insulator but allows for a magnetic field effect when a thin layer of platinum is glued to it.

See also  What is a Carbon Nanotube? Structure and Properties

“The magnetic field effect shows up only at the interface of this garnet crystal and platinum,” Gabor said. “If you can control the magnetic field, you control the current.”

To generate a photocurrent in a desired direction, the researchers directed a laser beam on YIG, with the laser serving as a local heat source. An effect known as the “photo-Nernst effect” generates the photocurrent whose direction is controlled by the external magnetic field.

“Direct imaging to track photocurrent streamlines in quantum optoelectronic devices remains a key challenge in understanding exotic device behavior,” Gabor said. “Our experiments show that photocurrent streamline microscopy is a robust new experimental tool to visualize a photocurrent in quantum materials. This tool helps us look at how electrons behave badly.”

Gabor explained that it is well known that electrons behave in “weird ways” under specific conditions, especially in very small devices.

“Our technique can now be used to better study them,” he said. “If I was trying to design an integrated circuit and wanted to know where heat might originate in it, I would want to know where the current flow lines are being squeezed. Our technique can help design circuits and estimate what to avoid and suggests you should not have sharp bends in your wires. Wires should be gradually curved. But that is not the state of the art right now.”

Provided by
University of California – Riverside



Source link

airplane Devices electron flow inspired motivates nanoscale Visualizing wings
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Comments are closed.

Top Articles
News

New microscope shows live imaging of nanoscale biological process for the first time

News

Nanoparticle spray reduces risk of airborne bacterial infections caused by air filtration systems

News

Liquid-bodied robot enables precise eradication of implant-related biofilm infections

Editors Picks

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Graphene’s new ion permeability could transform water filtration and sensors

January 25, 2025

Boosting curcumin’s absorption and effectiveness for disease prevention and therapy

March 12, 2024

Looking inside a microchip with 4 nanometer precision

August 16, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel