Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Unique copper nanocluster design boosts CO₂ reduction selectivity
News

Unique copper nanocluster design boosts CO₂ reduction selectivity

December 22, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Unique copper nanocluster design boosts CO₂ reduction selectivity
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Detailed architecture of two distinct Cu14 NCs, protected by two different thiols which were investigated in this study. These NCs exhibit different intercluster interactions that shape their stability and reaction selectivity for electrochemical CO2 reduction reaction. Credit: Small (2024). DOI: 10.1002/smll.202409910

While humble copper (Cu) may not boast the allure of gold or silver, its remarkable versatility makes it invaluable in cutting-edge research. A collaborative effort by scientists from Tohoku University, the Tokyo University of Science, and the University of Adelaide has unveiled a method to enhance the selectivity and sustainability of electrochemical CO2 reduction processes.

By engineering the surfaces of Cu nanoclusters (NCs) at the atomic level, the team has unlocked new possibilities for efficient and eco-friendly carbon conversion technologies. This breakthrough not only showcases the transformative potential of Cu in sustainable chemistry, but also highlights the critical impact of global collaboration in addressing pressing challenges like carbon emissions.

The results were published in the journal Small on December 4, 2024.

Electrochemical CO2 reduction reactions (CO2RR) have garnered significant attention in recent years for their potential to transform excess atmospheric CO2 into valuable products. Among the various nanocatalysts studied, NCs have emerged as a standout due to their distinct advantages over larger nanoparticles.

Within this family, Cu NCs have shown great promise, offering formation of variable products, high catalytic activity, and sustainability. Despite these advantages, achieving precise control over product selectivity at an industrial scale remains a challenge. As a result, current research is intensely focused on refining these properties to unlock the full potential of Cu NCs for sustainable CO2 conversion.

“To achieve this breakthrough, our team had to modify NCs at the atomic scale,” explains Professor Yuichi Negishi of Tohoku University, “However, it’s very challenging since the geometry of the NCs was heavily dependent on the precise parts that we needed to alter. It was like trying to move a supporting pillar of a building.”

Ligand-engineered copper nanoclusters could help combat CO₂ emissions
Representation of the Faradic Efficiency of the CO2 reduction products of different Cu NC samples at -1.2 V vs. a reversible hydrogen electrode (a) product collected after initial 2h of reaction and (b) product collected after 16h of reaction represent the sustainability of the selectivity of the products. Credit: Small (2024). DOI: 10.1002/smll.202409910

They successfully synthesized two Cu14 NCs with identical structural architectures by altering the thiolate ligands (PET: 2-phenylethanethiolate; CHT: cyclohexanethiolate) on their surfaces. Overcoming this limitation required the development of a carefully controlled reduction strategy, which enabled the creation of two structurally identical NCs with distinct ligands—a significant step forward in NC design.

See also  Nano-scale materials that mimic enzymes could convert CO₂ into chemical building blocks

However, the team observed variations in the stability of these NCs, attributed to differences in intercluster interactions. These disparities play a crucial role in shaping the sustainability of these NCs during catalytic applications.

Although these NCs share nearly identical geometries derived from two different thiolate ligands, they demonstrate markedly different product selectivity when their catalytic activity for CO2 reduction was tested. These variations impact the overall efficiency and selectivity of the CO2RR.

Negishi concludes, “These findings are pivotal for advancing the design of Cu NCs that combine stability with high selectivity, paving the way for more efficient and reliable electrochemical CO2 reduction technologies.”

Provided by
Tohoku University



Source link

boosts CO2 copper design nanocluster Reduction selectivity unique
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Highly tunable biotemplating method expands nanostructure synthesis options

News

Creating optical logic gates from graphene nanoribbons

News

Researchers use 2D bimetallic MOFs to create Se-containing electrocatalysts for overall water splitting

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Nano-optical sensors enable structural safety monitoring of buildings with color variations

November 13, 2024

New method to measure entropy production on the nanoscale

April 2, 2024

Challenges in Air Sensitivity for Next-Generation Batteries

October 11, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel