Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Unconventional piezoelectricity in ferroelectric hafnia
News

Unconventional piezoelectricity in ferroelectric hafnia

March 7, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Unconventional piezoelectricity in ferroelectric hafnia
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
The effect: polarization and electric field are pointing in the same direction. With positive d33, the sample expands, whereas the material is contracting when d33 is negative. Credit: Laura Canil

Hafnium oxide thin films are a fascinating class of materials with robust ferroelectric properties in the nanometer range. While the ferroelectric behavior is extensively studied, results on piezoelectric effects have so far remained mysterious.

A new study published in the journal Nature Communications now shows that the piezoelectricity in ferroelectric Hf0.5Zr0.5O2 thin films can be dynamically changed by electric field cycling. Another groundbreaking result is a possible occurrence of an intrinsic non-piezoelectric ferroelectric compound. These unconventional features in hafnia offer new options for use in microelectronics and information technology.

Since 2011, it has been known that certain hafnium oxides are ferroelectric; that is, they possess a spontaneous electric polarization whose direction can be switched in the opposite one by applying an external electric field. All ferroelectrics exhibit piezoelectricity and, most often, a positive longitudinal piezoelectric coefficient (d33).

This means that the crystal expands if the applied electric field is in the same direction as the electrical polarization. However, for hafnia, studies have shown contradictory results, with different hafnia films expanding or contracting in the same experimental conditions. Moreover, the ferroelectric polarization can apparently switch against the electrical field, which is called “anomalous” switching.

Unconventional behavior investigated

An international collaboration led by Prof. Dr. Catherine Dubourdieu, HZB, has now elucidated for the first time some aspects of these mysterious results and discovered an unconventional behavior in hafnia. They investigated Hf0.5Zr0.5O2 (HZO) capacitors using piezoresponse force microscopy (PFM): a conductive needle scans the sample surface under a small electrical voltage and measures the local piezoelectric response.

See also  DFRT for Ferroelectric Materials

Their study revealed that piezoelectricity in HZO is not an invariable parameter but is a dynamic entity that can be changed in the very same material by an external stimulus such as electrical cycling.

The ferroelectric HZO capacitors undergo a complete uniform inversion of the piezoelectric d33 coefficient sign from positive to negative upon electric field cycling. Every single location of the ferroelectric capacitor undergoes such a change, passing through zero local piezoelectricity upon a suitable number of AC cycles.

New option: Ferroelectric materials without piezoelectricity

Density functional theory calculations suggest that the positive d33 in the initial state is due to a metastable polar orthorhombic phase that gradually evolves, under ac cycling, towards the fully developed stable polar phase with negative d33.

The DFT calculations not only suggest a mechanism for the d33 sign inversion but also predict a groundbreaking result: a possible occurrence of an intrinsic non-piezoelectric ferroelectric compound, which is observed experimentally.

“For the first time, we have been able to experimentally observe a sign inversion of the piezoelectric effect in the whole area of a capacitor in these Hafnia Zirconia ferroelectrics under applied ac electric field,” Dubourdieu states. This discovery has enormous potential for technological applications.

“As the piezoelectricity in these materials can be dynamically changed and even nullified while the polarization remains robust, we see fantastic prospects for developing ferroelectric HfO2-based devices with electromechanical functionalities. Moreover, from a fundamental standpoint, the possibility of a non-piezoelectric ferroelectric compound would revolutionize our vision of ferroelectricity,” says Dubourdieu.

Provided by
Helmholtz Association of German Research Centres


See also  What are the Photothermal Applications of Nanoparticles?


Source link

ferroelectric hafnia piezoelectricity Unconventional
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Modular protein adapter technology enables exosome-based precision drug delivery

May 6, 2025

Comments are closed.

Top Articles
News

Depositing quantum dots on corrugated chips improves photodetector capabilities

News

Scientists develop novel nanoparticles that could serve as contrast agents

News

Printable molecule-selective nanoparticles enable mass production of wearable biosensors

Editors Picks

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Team pioneers a ‘one-pot platform’ to promptly produce mRNA delivery particles

July 18, 2024

The Benefits 2D Materials Could Bring to Biosensors

March 29, 2024

AI ‘lights up’ nanoparticles, revealing hidden atomic dynamics

March 6, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel