Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»Medical»TU Dresden researchers develop highly innovative solutions for the detection of viral pathogens
Medical

TU Dresden researchers develop highly innovative solutions for the detection of viral pathogens

September 16, 2023No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
TU Dresden researchers develop highly innovative solutions for the detection of viral pathogens
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

The outbreak of the COVID pandemic in 2020 has once again shown how important reliable and rapid detection methods are to initiate effective measures to combat a pandemic. Scientists from the Chair of Materials Science and Nanotechnology at TU Dresden (TUD) have made considerable progress in the development of highly innovative solutions for the detection of viral pathogens in two studies they presented recently. The results of their work have now been published in the journals “ACS Applied Materials & Interfaces” and “Advanced Materials Interfaces”.

Customized, powerful and adaptable nanoelectronic sensors represent a promising approach to be ready to fight both current and future pandemics. These sensors not only enable conventional diagnosis in cases of suspected outbreaks, but also a continuous monitoring of ambient air in buses, trains, schools or healthcare facilities. This means that appropriate and immediate measures can be taken as soon viruses appear.

Since 2020, the Dresden scientists have been working intensively on the development of miniaturized sensors for the accurate and efficient detection of SARS-CoV-2 antigens. In addition to the TUD team led by Prof. Gianaurelio Cuniberti and Dr. Bergoi Ibarlucea, scientists from the European Molecular Biology Laboratory (EMBL) in Hamburg, the Leibniz Institute of Polymer Research (IPF) Dresden and the Pohang University of Science and Technology (POSTECH) in Korea were also involved in the two studies.

Sybodies: a revolution in biological recognition

The first study, published in the journal ACS Applied Materials & Interfaces, describes a groundbreaking innovative approach that significantly increases accuracy and speed of SARS-CoV-2 antigen detection. It involves inserting synthetic nanobodies, known as sybodies, into biosensors as receptors.

See also  Researchers Achieve Unprecedented Upconversion Efficiency

“Sybodies represent a rapid, sustainable and ethically sound alternative that, unlike conventional antibodies, is developed and manufactured using non-animal methods,” said Prof. Gianaurelio Cuniberti, who coordinated both studies with Dr. Bergoi Ibarlucea. “Another key advantage of using sybodies is their smaller size compared to antibodies, so biological recognition processes can take place much closer to the sensor surface, increasing signal strength and making the sensors much faster and more sensitive,” he adds. Initial tests have been successfully conducted with silicon nanowire-based field-effect transistors modified with sybodies, demonstrating the great application potential of this approach.

Overcoming the loss of sensitivity in biological fluids

In another paper published in the journal Advanced Materials Interfaces, the team is looking at increasing the sensitivity of the sensors when they operate in biological fluids. Such samples have a complex molecular composition, which severely limits the sensor’s detection range. To solve this problem, the scientists developed a special surface modification with a hydrogel based on the dielectric polymer polyethylene glycol. This allows measurements to be taken directly in saliva and other samples from patients, and eliminates the need for time-consuming and costly sample preparation steps.

Source:

Technische Universitaet Dresden

Journal references:

  • Zhang, C., et al. (2023). Sybodies as Novel Bioreceptors toward Field-Effect Transistor-Based Detection of SARS-CoV-2 Antigens. ACS Applied Materials & Interfaces. doi.org/10.1021/acsami.3c06073.
  • Parichenko, A., et al., Bergoi Ibarlucea, & Gianaurelio Cuniberti. (2023). Hydrogel‐Gated Silicon Nanotransistors for SARS‐CoV‐2 Antigen Detection in Physiological Ionic Strength. Advanced Materials Interfaces. doi.org/10.1002/admi.202300391.

Source link

detection develop Dresden highly Innovative pathogens Researchers solutions viral
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Researchers develop full-color-emitting upconversion nanoparticle technology for ultra-high RGB display quality

April 20, 2025

Engineers develop a way to mass manufacture nanoparticles that deliver cancer drugs directly to tumors

April 15, 2025

Ultra-precision sensor technology developed for single-molecule detection

March 30, 2025

Light-induced symmetry changes in tiny crystals allow researchers to create materials with tailored properties

March 29, 2025

Nanowires produce localized highly alkaline microenvironments to kill bacteria

March 23, 2025

‘Nanosnag’ virus detection technique could streamline vaccine production quality checks

March 19, 2025

Comments are closed.

Top Articles
News

Researchers Develop “Goldene” – A New Form of Ultra-Thin Gold With Semiconductor Properties

News

Optical tweezers reveal forward and backward motion is symmetric in molecular shuttling

Discarded silk yarn can clean up polluted waterways—researchers develop hollow sphere silk particles to test adsorption

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Novel fabrication technique takes transition metal telluride nanosheets from lab to mass production

April 12, 2024

A New Type of Quantum Bit Achieved in Semiconductor Nanostructures

August 17, 2023

Hybrid nanomaterials promise a sustainability boost across multiple industries

November 2, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel