Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Titanium micro-spikes skewer resistant superbugs
News

Titanium micro-spikes skewer resistant superbugs

September 8, 2023No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Titanium micro-spikes skewer resistant superbugs
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Surface topography, architecture, wettability, and chemical characterization of micro-pillared Ti surfaces. A,B) Representative top-view and tilted (55°) SEM micrographs. Scale bars are 20 µm and 5 µm for top-view and tilted high-resolution micrographs, respectively. The water contact angle (inset to SEM images) showed that micro-pillared Ti surfaces were moderately hydrophobic (n = 5). C) Representative 2D AFM micrograph and corresponding AFM line profile. The scale bar of the inset AFM micrograph is 2 µm. D,E) FIB-SEM cross-section of the micro-pillared Ti showing the clustering of the pillars. Platinum and titanium are indicated. Credit: Advanced Materials Interfaces (2023). DOI: 10.1002/admi.202300314

A new study suggests rough surfaces inspired by the bacteria-killing spikes on insect wings may be more effective at combating drug-resistant superbugs, including fungus, than previously understood.

The increasing rates of drug-resistant infection has health experts globally concerned.

To avoid infection around implants—such as titanium hips or dental prosthesis—doctors use a range of antimicrobial coatings, chemicals and antibiotics, but these fail to stop antibiotic-resistant strains and can even increase resistance.

To address these challenges, RMIT University scientists have designed a pattern of microscale spikes that can be etched onto titanium implants or other surfaces to provide effective, drug-free protection from both bacteria and fungus.

The team’s study published in Advanced Materials Interfaces tested the effectiveness of the altered titanium surface in killing multi drug-resistant Candida—a potentially deadly fungus responsible for one in 10 hospital-acquired medical device infections.

The specially-designed spikes, each of a height similar to that of a bacteria cell, destroyed about half the cells soon after contact.

Significantly, the other half not immediately destroyed were rendered unviable from the injuries sustained, unable to reproduce or cause infection.

Lead Postdoctoral researcher, Dr. Denver Linklater, said metabolic analysis of protein activity revealed both the Candida albicans and multi-drug resistant Candida auris fungi cells sitting injured on the surface were as good as dead.

“The Candida cells that were injured underwent extensive metabolic stress, preventing the process where they reproduce to create a deadly fungal biofilm, even after seven days,” said Linklater, from RMIT’s School of Science. “They were unable to be revived in a non-stress environment and eventually shut down in a process known as apoptosis, or programmed cell death.”

See also  The Fight Against Superbugs and the Future of Antimicrobial Surfaces

The surface’s effectiveness against common pathogenic bacteria including golden staph was demonstrated in an earlier study published in Materialia.

Group leader, Distinguished Professor Elena Ivanova, said the latest findings shed light on the design of antifungal surfaces to prevent biofilm formation by dangerous, multi-drug resistant yeasts.

“The fact that cells died after initial contact with the surface—some by being ruptured and others by programmed cell death soon after—suggests that resistance to these surfaces will not be developed,” she said. “This is a significant finding and also suggests that the way we measure the effectiveness of antimicrobial surfaces may need to be rethought.”

Advances have been made over the past decade in designing surfaces that kill superbugs on contact. However, finding the right types of surface patterns to eliminate 100% of microbes so some don’t survive to become resistant is an ongoing challenge.

“This latest study suggests that it may not be entirely necessary for all surfaces to eliminate all pathogens immediately upon contact if we can show that the surfaces are causing programmed cell death in the surviving cells, meaning they die regardless,” she said.

RMIT’s Multifunctional Mechano-biocidal Materials Research Group has led the world for over a decade in the development of antimicrobial surfaces inspired by the nanopillars covering dragonfly and cicada wings. Ivanova herself was among the first to observe how when bacteria settle on an insect wing, the pattern of nanopillars pulls the cells apart, fatally rupturing the membranes.

“It’s like stretching a latex glove,” Ivanova said. “As it slowly stretches, the weakest point in the latex will become thinner and eventually tear.”

See also  Researchers uncover molecular mechanisms behind effects of MXene nanoparticles on muscle regeneration

Her team have spent the past decade replicating these insects’ nanopillars in nanopatterns of their own, with this latest advance achieved using a technique called plasma etching to create the antibacterial and antifungal pattern in titanium.

Ivanova said the relatively simple etching technique could be optimized and applied to a wide range of materials and applications.

“This new surface modification technique could have potential applications in medical devices but could also be easily tweaked for dental applications or for other materials like stainless steel benches used in food production and agriculture,” she said.

Study lead author and joint Ph.D. candidate with RMIT and the ARC Research Hub for Australian Steel Manufacturing, Phuc Le, said working closely with industry partner BlueScope Steel helped focus efforts to practical solutions for industry.

“Collaborating with industrial partners has been a transformative aspect of my Ph.D. journey,” he said. “Their first-hand insights as manufacturers have provided clarity on the challenges their products face and opened doors for me to research and devise practical solutions. While our studies are in the preliminary stages, the prospects for product optimization are promising.”

Provided by
RMIT University



Source link

microspikes resistant skewer Superbugs Titanium
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
Research

Scripps Research Scientists Unveil Promising Solution to Influenza Challenges

Research

Breakthrough in Virus Research Using Sound Wave Technology

News

Nanopore Technology Enables Single-Molecule Analysis of Protein Structures

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Durable, inexpensive electrocatalyst generates clean hydrogen and oxygen from water

December 4, 2023

Researchers develop minimal nanozymes with carbon dioxide capture capacity

October 5, 2023

Nanoparticles amplify potential cancer vaccine power

December 24, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel