Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Nanoparticle smart spray helps crops block infection before it starts

June 10, 2025

Revealing hidden transformations in 2D materials with atomic force microscopes

June 9, 2025

High-entropy nanoribbons offer cost-effective solution for harsh environments

June 8, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Thermal properties of new 2D materials for microchips can now be measured well
News

Thermal properties of new 2D materials for microchips can now be measured well

April 25, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Properties of new materials for microchips can now be measured well
Delft University of Technology researcher Gerard Verbiest in his nanoacoustics lab. Credit: Studio Wavy / TU Delft

Making ever smaller and more powerful chips requires new ultrathin materials: 2D materials that are only 1 atom thick, or even just a couple of atoms. Think about graphene or ultra-thin silicon membrane for instance.

Scientists at TU Delft have taken an important step in application of these materials: they can now measure important thermal properties of ultrathin silicon membranes. A major advantage of their method is that no physical contact needs to be made with the membrane, so pristine properties can be measured and no complex fabrication is required.

The findings are published in the journal APL Materials.

“Extremely thin membranes have very different properties from the materials we see around us. For example, graphene is stronger than steel yet extremely flexible,” says TU Delft researcher Gerard Verbiest. “These are properties that make these materials very suitable for use in sensors, provided those properties are properly understood.”

As with many electronics, heat conduction is a big challenge for realizing the best performance. It helps determine how well a material will respond to certain loads a chip or sensor has to carry. Heat conduction in two dimensions is fundamentally different from that in three dimensions.

As a consequence, the thermal properties of 2D materials are of great interest, from both scientific and application points of view. However, few techniques are available for the accurate determination of these properties in ultrathin suspended membranes.

The researchers used an optomechanical methodology for extracting the thermal expansion coefficient, specific heat, and thermal conductivity of ultrathin membranes made of 2H-TaS2, FePS3, polycrystalline silicon, MoS2, and WSe2. It involved driving a suspended membrane using a power-modulated laser and measuring its time-dependent deflection with a second laser. This way, both the temperature-dependent mechanical fundamental resonance frequency of the membrane and characteristic thermal time constant at which the membrane cools down are measured

See also  Researchers wire up individual graphene nanoribbons

Collaboration between science and industry is crucial for development of this technology. Verbiest says, “By measuring thin silicon membranes in this project we have shown the technique we developed in Delft to work on materials relevant to the semiconductor industry. This gives research an extra boost, because the insights then potentially lead immediately to a future industrial application, which is important for the Netherlands and a significant motivation for such research.”

The obtained thermal properties are in good agreement with the values reported in the literature for the same materials. This research provides an optomechanical method for determining the thermal properties of ultrathin suspended membranes, which are difficult to measure otherwise. It provides a route toward improving our understanding of heat transport in the 2D limit and facilitates engineering of 2D structures with a dedicated thermal performance.

Provided by
Delft University of Technology



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Nanoparticle smart spray helps crops block infection before it starts

June 10, 2025

Revealing hidden transformations in 2D materials with atomic force microscopes

June 9, 2025

High-entropy nanoribbons offer cost-effective solution for harsh environments

June 8, 2025

Unlocking precise composition analysis of nanomedicines

June 8, 2025

Self-stirring nanoreactors enhance reaction efficiency for chemical synthesis

June 7, 2025

Ultrathin resonators set new standard for efficient light manipulation

June 7, 2025

Comments are closed.

Top Articles
News

Chiral plasmonic nanostructures push the limits of light manipulation on the nanoscale

Team pioneers a ‘one-pot platform’ to promptly produce mRNA delivery particles

Research

Metal Organic Frameworks (MOFs): An Advanced Material That’s Finally Coming of Age for Nanoscale Commercialisation

Editors Picks

Nanoparticle smart spray helps crops block infection before it starts

June 10, 2025

Revealing hidden transformations in 2D materials with atomic force microscopes

June 9, 2025

High-entropy nanoribbons offer cost-effective solution for harsh environments

June 8, 2025

Unlocking precise composition analysis of nanomedicines

June 8, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Tiny chips promise swift disease diagnosis from a single breath

December 23, 2024

Nitrogen and argon plasma boosts performance of carbon-based supercapacitor electrodes

April 16, 2025

mRNA-based drugs successfully delivered to intestine—without passing through the liver

February 6, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel