Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Team observes third-order exceptional line in nitrogen-vacancy spin system
News

Team observes third-order exceptional line in nitrogen-vacancy spin system

February 14, 2024No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Team observes third-order exceptional line in nitrogen-vacancy spin system
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
The third-order exceptional point structures of H(μ,ν)(γ,h) with different symmetries. Credit: Nature Nanotechnology (2024). DOI: 10.1038/s41565-023-01583-0

Researchers have systematically studied the relations between symmetries and high-order non-Hermitian exceptional points (EPs), and observed the third-order exceptional line (EL) in a nitrogen-vacancy (NV) spin system. The work is published in the journal Nature Nanotechnology.

EPs are singularities in non-Hermitian systems, where there are two or more eigenvalues and eigenstates coalesce. Many exotic topological phenomena and novel dynamic features occur thanks to the unique characteristics of EPs. EPs have played an essential role in understanding edge-cutting areas like quantum computing and topological phase transitions.

High-order EPs exhibit richer topological characteristics and better sensing performance than second-order EPs. However, realizing high-order EPs is rather difficult since it relies on the simultaneous tuning of multiple system parameters, and the higher the order of the EPs, the more system parameters must be tuned simultaneously, making the realization process challenging.

The research teams—led by Academician Du Jiangfeng and Prof. Rong Xing from CAS Key Laboratory of Microscale Magnetic Resonance of University of Science and Technology of China (USTC)—utilized a single NV center, an atomic-scale defect in diamond, and the nuclear spin system to realize the non-Hermitian systems that embrace both PT symmetry and pseudochirality. Furthermore, the experimental observation of third-order EL in two-dimensional parameter space was reported.

By systemically investigating the role of symmetry in high-order EP geometries, the researchers revealed that third-order EPs can exist as isolated points when there was only PT symmetry in the non-Hermitian Hamiltonian.

The researchers further explored the relationship between the third-order EPs and the symmetries of the non-Hermitian Hamiltonians. It turned out that there was no third-order EP when the non-Hermitian Hamiltonian had no symmetry, which highlights the importance of symmetries in studying the structure of high-order EPs.

See also  Drug delivery system overcomes circulatory roadblock that prevents gene therapies from reaching their targets

It is worth mentioning that the successful observation of high-order EP geometries has benefited from the former studies in diamonds. Prof. Wang Ya, in particular, has been dedicated to synthesis and production of high-quality diamonds for many years, which has laid a solid foundation for this work.

This work is of fundamental importance to non-Hermitian studies. It can be further applied to explore high-order EP-related topological physics at the atomic scale and shed light on quantum control and quantum-enhanced metrology.

Provided by
University of Science and Technology of China


Source link

exceptional line nitrogenvacancy observes spin System Team thirdorder
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

A New Home For Europe’s Semiconductor Metrology

News

Creating optical logic gates from graphene nanoribbons

Research

Equity Crowdfunding in Nanotechnology — The Democratization of Innovative Investment

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Researchers develop nanoparticle treatment approach for optimized pancreatic cancer therapy

November 24, 2023

New nanosensors make diagnostic procedures more sensitive

February 18, 2024

Applications of BioAFM in Life Science

November 16, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel