Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»Medical»Targeting TGFβ/ROCK2/YAP signaling axis to enhance drug delivery in fibrotic pancreatic cancer
Medical

Targeting TGFβ/ROCK2/YAP signaling axis to enhance drug delivery in fibrotic pancreatic cancer

June 6, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Targeting TGFβ/ROCK2/YAP signaling axis to enhance drug delivery in fibrotic pancreatic cancer
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

Pancreatic cancer, recognized as one of the deadliest cancers, poses a persistent challenge for medical professionals globally due to its aggressive behavior and resistance to conventional therapies. The dense fibrotic tissue surrounding pancreatic tumors acts as a significant barrier, hindering the delivery of macromolecular drugs such as antibodies and nanomedicines. Therefore, addressing fibrosis is crucial in enhancing therapeutic outcomes for patients with pancreatic cancer, whose prognosis remains bleak.

Understanding the underlying mechanisms driving fibrosis is essential in advancing treatment strategies for this devastating illness. The conventional models used for studying pancreatic ductal adenocarcinoma (PDAC) fibrotic environment often fail to accurately mimic the complexity of the disease. Seeking a more clinically relevant approach, a team of researchers led by Professor Mitsunobu R. Kano from Okayama University, Japan in collaboration with The University of Tokyo and Tohoku University developed a realistic human pancreatic cancer fibrotic barrier model using patient-derived pancreatic stellate cells (PSCs). Their research, co-authored by Prof. Hiroyoshi Y. Tanaka from Okayama University, Prof. Horacio Cabral from The University of Tokyo, and Prof. Atsushi Masamune from Tohoku University, was made available online on 29 March 2024 and was formally published in the May 2024 issue of the Journal of Controlled Release.

This innovative model offers a convenient, rapid, and highly reproducible experimental platform to assess pathogenetic mechanisms driving fibrosis as well as to test the efficacy of potential therapeutic interventions. Understanding the molecular mechanisms driving extracellular matrix (ECM) remodeling in PDAC fibrosis is crucial for overcoming treatment barriers. By dissecting these signaling pathways, researchers aimed to determine points of intervention that could be manipulated to enhance tissue permeability and develop more effective treatments for pancreatic cancer.

See also  New electrospinning innovations transform wearable and implantable medical devices

“We used advanced cell culture techniques along with molecular and pharmacological interventions to examine the signaling pathways involved in PDAC fibrosis,” explained Professor Kano. “Initially, we assessed the impact of blocking the transforming growth factor-β (TGFβ) and Rho-associated kinase (ROCK) pathways on ECM remodeling and tissue permeability within our 3D fibrotic tissue model. Additionally, we also investigated the involvement of YAP (Yes-associated protein), a key regulator of cell differentiation, in mediating the effects of ROCK inhibition on ECM remodeling and tissue permeability.”

The results shed light on promising avenues for enhancing drug delivery in PDAC by targeting specific signaling pathways involved in fibrosis. “Inhibition of the TGFβ pathway led to a reduction in ECM remodeling and improved tissue permeability of drugs in 3D-PDAC fibrotic model. Similarly, blocking the ROCK pathway, particularly through ROCK2 inhibition, resulted in decreased ECM remodeling and enhanced drug permeability. Knockdown experiments revealed the predominant role of ROCK2 in regulating these processes,” shares Prof. Kano. “Additionally, targeting the YAP protein, a downstream effector of ROCK signaling, produced similar improvements in ECM remodeling and drug permeability.” These findings highlight the potential of targeting the TGFβ/ROCK2/YAP signaling axis to mitigate fibrotic barriers and enhance drug delivery in pancreatic cancer, offering promising prospects for improving treatment outcomes in this challenging disease.

Looking ahead, the implications of the study extend beyond pancreatic cancer alone. “Fibrosis is prevalent not only in pancreatic cancer but also in other cancers that are difficult to treat, such as those affecting the stomach, breast, and lung, as well as in some non-cancerous diseases. With effective medical treatments lacking for fibrotic conditions, our findings offer a glimmer of hope for enhancing treatment strategies and outcomes in a broader spectrum of fibrotic cancers as well as non-cancerous fibrotic conditions,” concludes Prof. Kano.

See also  Scientists enhance localized surface plasmon resonance through oxide particle superlattices

Source:

Journal reference:

Tanaka, H. Y., et al. (2024). Targeting ROCK2 improves macromolecular permeability in a 3D fibrotic pancreatic cancer microenvironment model. Journal of Controlled Release. doi.org/10.1016/j.jconrel.2024.03.041.

Source link

axis cancer delivery drug Enhance fibrotic Pancreatic signaling targeting TGFβROCK2YAP
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Drug-loaded nanoparticles can enhance precision and safety of ultrasound tumor treatment

May 27, 2025

Biosensor uses pH-responsive DNA nanoswitches for highly sensitive bladder cancer detection in urine

May 24, 2025

In vivo 3D printing using sound holds promise for precise drug delivery, wound healing and more

May 18, 2025

Modular protein adapter technology enables exosome-based precision drug delivery

May 6, 2025

In What Ways Can Nanosensors Be Used to Detect Cancer?

April 22, 2025

AI combined with nanotech can detect oral cancer earlier

April 21, 2025

Comments are closed.

Top Articles
News

A Guide to Semiconductor Chip Layers

Micropipette uses targeted ion delivery to activate individual neurons

News

Ultra-thin, flexible silicone nanosensor could have huge impact on brain injury treatment

Editors Picks

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

The demonstration of vacuum levitation and motion control on an optical-electrostatic chip

July 9, 2024

How to Improve Nanowire Electrical Properties

January 23, 2024

When to Use Fast Steering Mirrors and Galvo Scanners

March 13, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel