Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Sustainable hydrophobic cellulose shows potential for replacing petroleum-related products
News

Sustainable hydrophobic cellulose shows potential for replacing petroleum-related products

November 15, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Sustainable hydrophobic cellulose shows potential for replacing petroleum-related products
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Schematic illustration of the hybrid network based on CNF and DFNKF, highlighting the residues exploited for functionalization and interaction with CNF. The halogenated derivatives, DF(I)NKF and DF(F5)NKF, were obtained substituting the Phe in the second position with the corresponding halogenated amino acids. Credit: Journal of Materials Chemistry B (2024). DOI: 10.1039/D4TB01359J

A recent study has aimed to create hydrophobic paper by exploiting the mechanical properties and water resistance of cellulose nanofibers, and so produce a sustainable, high-performance material suitable for packaging and biomedical devices. This involved a supramolecular approach, i.e., combining short chains of proteins (peptide sequences) that do not chemically modify the cellulose nanofibers. Sustainable hydrophobic paper may one day replace petroleum-related products.

The study is titled “Nanocellulose-short peptide self-assembly for improved mechanical strength and barrier performance,” and was featured on the cover of the Journal of Materials Chemistry B. The work was carried out by researchers from the “Giulio Natta” Department of Chemistry, Materials and Chemical Engineering at the Politecnico di Milano, in collaboration with Aalto University, the VTT-Technical Research Centre in Finland and the SCITEC Institute of the CNR.

Cellulose nanofibers (CNFs) are natural fibers derived from cellulose—a renewable and biodegradable source—and are well known for their strength and versatility. In the study, the researchers from the SupraBioNanoLab of the “Giulio Natta” Department of the Politecnico di Milano showed how it is possible to greatly improve the properties of cellulose nanofibers without chemically modifying them, instead adding small proteins known as peptides.

“Our supramolecular approach involved adding small sequences of peptides, which bind onto the nanofibers and so improve their mechanical performance and water-resistance,” said Elisa Marelli, co-author of the study, explaining the methodology. “The results of the study showed that even minimal quantities of peptides (less than 0.1%) can significantly increase the mechanical properties of the hybrid materials produced, giving them greater resistance to stress.”

See also  Research proposes three-phase catalytic process for assembling nanoparticles to enhance SERS sensing

Finally, the researchers assessed the impact of adding fluorine atoms to the peptide sequences. This made it possible to create a structured hydrophobic film on the material, providing even greater water resistance while still preserving its biocompatible and sustainable characteristics.

As Pierangelo Metrangolo, co-author of the study, pointed out, “This advance opens up new opportunities for creating biomaterials that can compete with petroleum-derived materials in terms of performance, achieving the same quality and efficiency while reducing environmental impact. These hybrid materials are very suitable for sustainable packaging, where resistance to moisture is vital, and also for use in biomedical devices, thanks to their biocompatibility.”

Provided by
Polytechnic University of Milan



Source link

Cellulose hydrophobic petroleumrelated Potential products replacing shows Sustainable
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
Research

Emerging Trends in Wearable Devices for Autonomous Healthcare

News

Humans to Provide Energy Source for Smart Devices of the Future

News

Scientists Discover New Way To Effectively Treat Cancer

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Nanotechnology-Enhanced mRNA Vaccines | A Guide

September 8, 2023

Quantum confinement explains the dramatic rise of electrical resistivity in few-nanometers-thick silicon sheets

April 27, 2025

Market Trends and Investment Insights in Nanotech-Enhanced Clean Energy

February 7, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel