Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Surface-modified apatite nanoparticles use pH control to improve biocompatibility of implants
News

Surface-modified apatite nanoparticles use pH control to improve biocompatibility of implants

February 14, 2025No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Innovative apatite nanoparticles for advancing the biocompatibility of implanted biodevices
Researchers from Nagaoka University of Technology, Japan develop highly biocompatible apatite nanoparticles by manipulating surface properties through pH changes. Credit: Motohiro Tagaya / Nagaoka University of Technology, Japan

Medical implants have transformed health care, offering innovative solutions with advanced materials and technologies. However, many biomedical devices face challenges like insufficient cell adhesion, leading to inflammatory responses after their implantation in the body.

Apatite coatings, particularly hydroxyapatite (HA)—a naturally occurring form of apatite found in bones, have been shown to promote better integration with surrounding tissues. However, the biocompatibility of artificially synthesized apatite nanoparticles often falls short of expectations, primarily due to the nanoparticles’ limited ability to bind effectively with biological tissues.

To overcome this challenge, researchers at Nagaoka University of Technology, Japan have developed a method for synthesizing surface-modified apatite nanoparticles that results in improved cell adhesion, offering new possibilities for the next generation of biocompatible medical implants.

Led by Dr. Motohiro Tagaya, Associate Professor at the Department of Materials Science and Bioengineering at Nagaoka University of Technology, Japan, this research aims to enhance the performance of apatite coatings and advance the field of biocompatible materials for medical devices.

The findings of this study were published in ACS Applied Materials & Interfaces. Along with Dr. Tagaya, Mr. Kazuto Sugimoto from Nagaoka University of Technology, Dr. Tania Guadalupe Peñaflor Galindo from Sophia University, and Mr. Ryota Akutsu from Nagaoka University of Technology were also a part of this research team.

Apatites are a class of calcium-phosphorus-based inorganic compounds, with hydroxyapatite—a naturally occurring form found in bones. These compounds are known for their high biocompatibility.

Recent studies have found that coating artificial joints and implants with apatite nanoparticles is a plausible solution for improving the biocompatibility of these biodevices. However, the artificially synthesized nanoparticles often show reduced binding affinity to biological tissues in vitro.

See also  The Power of Electrical Atomic Force Microscopy (AFM) Modes

According to Dr. Tagaya and his team, this difference could be linked to the nanoscale surface layer of the apatite nanoparticles.

Dr. Tagaya’s research was driven by a desire to unravel the complexities of biocompatible materials, leading his team to develop an interdisciplinary framework that controls the intricate interactions between apatite and biological systems.

“The properties of the nanoscale surface layer of apatite nanoparticles are crucial when considered for medical coatings,” adds Dr. Tagaya. Adding further, he says, “In this study, we successfully controlled the nanoscale surface layers of apatite nanoparticles, paving the way for advanced surface coating technologies for biodevices.”

The team synthesized hydroxyapatite nanoparticles by mixing aqueous solutions of calcium and phosphate ions. The pH of the solution was controlled using three different bases, which included tetramethylammonium hydroxide (TMAOH), sodium hydroxide (NaOH), and potassium hydroxide (KOH).

Discover the latest in science, tech, and space with over 100,000 subscribers who rely on Phys.org for daily insights.
Sign up for our free newsletter and get updates on breakthroughs,
innovations, and research that matter—daily or weekly.

The precipitated nanoparticles were then evaluated for their surface layer characteristics and were further used for coating via electrophoretic deposition.

The results revealed that pH was a key factor during synthesis, since it affected the crystalline phases, surface properties, and electrophoretic deposition.

On analyzing the crystalline phases of the nanoparticles, it was observed that the choice of pH influenced the formation of different calcium phosphate phases, like calcium-deficient hydroxyapatite (CDHA) and carbonate-containing hydroxyapatite (CHA). Higher pH favored the formation of CHA, leading to better crystallinity, and a higher calcium to phosphorus (Ca/P) molar ratio.

See also  Biomimetic crystallization for long-pursued –COOH-functionalized gold nanocluster with near-infrared phosphorescence

The surface of the apatite nanoparticles shows three different layers. The inner apatite layer/core is characterized by the presence of the crystalline structure of the apatite. Above the apatite layer is the non-apatitic layer, which is rich in ions like phosphate ions and carbonate ions.

This layer reacts with water molecules and forms the hydration layer. Analyzing the surface characteristics of these layers revealed that pH adjustments facilitated the formation of the non-apatitic layer rich in reactive ions, enhancing hydration properties, which was confirmed.

Importantly, the study revealed that while higher pH facilitates the formation of the non-apatitic layer, the presence of Na+ ions reduces the concentration of phosphate ions, leading to decreased reactivity of the layer.

The introduction of substantial ions by NaOH also affected the uniformity of electrophoretic deposition, as observed in scanning probe microscope studies. This effect was not observed with KOH, indicating that KOH was more suitable than NaOH for forming the non-apatitic layer and ensuring a uniform coating.

Emphasizing the significance of the study, Dr. Tagaya says, “This study focuses on the critical interfaces between bioceramics and biological systems and could inspire designs of biocompatible surfaces with preferential cell adhesion.”

These findings can be potentially useful for surface coating of a wide range of biodevices that are implanted in the human body, including artificial joints and implants.

Going ahead, the team intends to push the boundaries of nanobiomaterials, paving the way for groundbreaking innovations in medical materials and devices that could revolutionize health care and improve patient outcomes.

See also  Proposed solution could bring DNA-nanoparticles motors up to speed with motor proteins

Provided by
Nagaoka University of Technology


Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Comments are closed.

Top Articles
News

Mechanical engineer figures out way to enhance sensitivity of nanopores for early detection of diseases

News

Team creates power generator that runs on natural atmospheric humidity

News

How Moiré Excitons Are Advancing Quantum Computing

Editors Picks

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

A New Solution to Remove Harmful Chemicals from the Environment

March 8, 2024

Opening a new chapter in 3D microprinting with MXene

March 20, 2025

Resource Consumption in the Semiconductor Industry

December 18, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel