Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Electrospun polymer fiber mats enable controlled release of antibacterial drugs for wound care

June 15, 2025

Revolutionizing Agriculture: Nanopriming for Resilient Crops

June 14, 2025

A fresh new way to produce freshwater: Sonicated carbon nanotube catalysts

June 14, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Super-resolution microscopy provides a nano-scale look
News

Super-resolution microscopy provides a nano-scale look

June 11, 2024No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Super-resolution microscopy provides a nano-scale look
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Viral RNA, labeled with a fluorescent dye, clusters around the nucleus of a cell infected with SARS-CoV-2, as captured through super-resolution microscopy. Credit: Nature Communications (2024). DOI: 10.1038/s41467-024-48991-x

A new, nano-scale look at how the SARS-CoV-2 virus replicates in cells may offer greater precision in drug development, a Stanford University team reports in Nature Communications. Using advanced microscopy techniques, the researchers produced what might be some of the most crisp images available of the virus’s RNA and replication structures, which they witnessed form spherical shapes around the nucleus of the infected cell.

“We have not seen COVID infecting cells at this high resolution and known what we are looking at before,” said Stanley Qi, Stanford associate professor of bioengineering in the Schools of Engineering and of Medicine and co-senior author of the paper. “Being able to know what you are looking at with this high resolution over time is fundamentally helpful to virology and future virus research, including antiviral drug development.”

Blinking RNA

The work illuminates molecular-scale details of the virus’ activity inside host cells. In order to spread, viruses essentially take over cells and transform them into virus-producing factories, complete with special replication organelles. Within this factory, the viral RNA needs to duplicate itself over and over until enough genetic material is gathered up to move out and infect new cells and start the process over again.

The Stanford scientists sought to reveal this replication step in the sharpest detail to date. To do so, they first labeled the viral RNA and replication-associated proteins with fluorescent molecules of different colors. But imaging glowing RNA alone would result in fuzzy blobs in a conventional microscope. So they added a chemical that temporarily suppresses the fluorescence. The molecules would then blink back on at random times, and only a few lit up at a time. That made it easier to pinpoint the flashes, revealing the locations of the individual molecules.

See also  A Q&A on designing DNA nanostructures for biomedical applications

Using a setup that included lasers, powerful microscopes, and a camera snapping photos every 10 milliseconds, the researchers gathered snapshots of the blinking molecules. When they combined sets of these images, they were able to create finely detailed photos showing the viral RNA and replication structures in the cells.

“We have highly sensitive and specific methods and also high resolution,” said Leonid Andronov, co-lead author and Stanford chemistry postdoctoral scholar. “You can see one viral molecule inside the cell.”

The resulting images, with a resolution of 10 nanometers, reveal what might be the most detailed view yet of how the virus replicates itself inside of a cell. The images show magenta RNA forming clumps around the nucleus of the cell, which accumulate into a large repeating pattern. “We are the first to find that viral genomic RNA forms distinct globular structures at high resolution,” said Mengting Han, co-lead author and Stanford bioengineering postdoctoral scholar.

The clusters help show how the virus evades the cell’s defenses, said W. E. Moerner, the paper’s co-senior author and Harry S. Mosher Professor of Chemistry in the School of Humanities and Sciences. “They’re collected together inside a membrane that sequesters them from the rest of the cell, so that they’re not attacked by the rest of the cell.”







Video showing the different colored fluorescent labels blinking on and off, revealing more precise locations for individual molecules. Credit: Leonid Andronov, Moerner Laboratory

Nanoscale drug testing

Compared to using an electron microscope, the new imaging technique can allow researchers to know with greater certainty where virus components are in a cell thanks to the blinking fluorescent labels. It can also provide nanoscale details of cell processes that are invisible in medical research conducted through biochemical assays.

See also  In quest to prevent debilitating traumatic brain injuries, new foam material rises to the top

The conventional techniques “are completely different from these spatial recordings of where the objects actually are in the cell, down to this much higher resolution,” said Moerner. “We have an advantage based on the fluorescent labeling because we know where our light is coming from.”

Seeing exactly how the virus stages its infection holds promise for medicine. Observing how different viruses take over cells may help answer questions such as why some pathogens produce mild symptoms while others are life-threatening. The super-resolution microscopy can also benefit drug development. “This nanoscale structure of the replication organelles can provide some new therapeutic targets for us,” said Han. “We can use this method to screen different drugs and see its influence on the nanoscale structure.”

Indeed, that’s what the team plans to do. They will repeat the experiment and see how the viral structures shift in the presence of drugs like Paxlovid or remdesivir. If a candidate drug can suppress the viral replication step, that suggests the drug is effective at inhibiting the pathogen and making it easier for the host to fight the infection.

The researchers also plan to map all 29 proteins that make up SARS-CoV-2 and see what those proteins do across the span of an infection. “We hope that we will be prepared to really use these methods for the next challenge to quickly see what’s going on inside and better understand it,” said Qi.

Provided by
Stanford University



Source link

Microscopy nanoscale Superresolution
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Electrospun polymer fiber mats enable controlled release of antibacterial drugs for wound care

June 15, 2025

Revolutionizing Agriculture: Nanopriming for Resilient Crops

June 14, 2025

A fresh new way to produce freshwater: Sonicated carbon nanotube catalysts

June 14, 2025

SECCM Imaging of Highly Oriented Pyrolytic Graphite

June 14, 2025

Isotopically barcoded beads allow for mass serological analysis of up to 18,000 measurements at once

June 14, 2025

Tiny ‘heat bombs’ made from biodegradable polymers could precisely target and treat diseased cells

June 13, 2025

Comments are closed.

Top Articles
News

Researchers image magnetic skyrmions at room temperature for the first time

News

Cells’ electric fields keep nanoparticles at bay, scientists confirm

Research

A New Era in Electronics with Mass Production of Metal Nanowires

Editors Picks

Electrospun polymer fiber mats enable controlled release of antibacterial drugs for wound care

June 15, 2025

Revolutionizing Agriculture: Nanopriming for Resilient Crops

June 14, 2025

A fresh new way to produce freshwater: Sonicated carbon nanotube catalysts

June 14, 2025

SECCM Imaging of Highly Oriented Pyrolytic Graphite

June 14, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Silver nanoparticles trapped within a polymer matrix allow for precise color control in anti-counterfeiting technology

December 14, 2024

A new approach to controlling electronic states

March 2, 2025

Novel host-guest assembly provides enhanced reactivity

March 20, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel