Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Studying thin films under extreme temperatures with reflectometry
News

Studying thin films under extreme temperatures with reflectometry

July 6, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Studying thin films under extreme temperatures with reflectometry
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Schematic of the Ni/Cu catalytic alloy-mediated EG synthesis on 3C–SiC on silicon. Credit: RSC Advances (2024). DOI: 10.1039/D3RA08289J

A team of researchers from ANSTO and University of Technology Sydney have set a record by conducting thin film experiments at 1,100 degrees Celsius, using the Spatz reflectometer equipped with a vacuum furnace.

The unique combination of neutron reflectometry with high temperature apparatus enables atomic-scale insights into thin film growth and diffusion processes. This is of relevance to a wide range of thin film technology and devices which undergo a range of processing and heat treatment conditions to optimize performance.

The UTS group, led by Francesca Iacopi and Aiswarya Pradeepkumar, has been studying the growth of thin carbon sheets (graphene) on SiC/Si substrates which occurs at high temperatures. This award-winning process allows for highly conductive electronics that can be integrated with standard silicon fabrication processes.

To better understand the carbon growth mechanisms and onset temperatures, the UTS team made extensive use of the Spatz neutron reflectometer at the Australian Center for Neutron Scattering.

Neutron reflectometry allows thin films in the thickness of 1–100 nm to be studied. Because of the unique characteristics of neutrons, studies can be performed in-situ in advanced sample environments, in this case, a sophisticated vacuum furnace to observe film changes on the timescale from minutes to hours.

Dr. Aiswarya Pradeepkumar, a research fellow within the ARC Center for Transformative Meta-optical Systems, and a recipient of the Australian Institute of Nuclear Science and Engineering (AINSE) Early Career Grant, led the ANSTO-UTS collaboration which was the first experiment of its type in Australia.

The research was published in RSC Advances, and subsequently highlighted in an article for Neutron News.

See also  Metamolecule metamaterial fabrication with 3D co-assembly

“The unique high-temperature neutron reflectometry has allowed us to gain insights into the alloy-mediated epitaxial graphene synthesis on 3C-SiC/Si substrates unveiling novel avenues of 2D material optimization for nanoelectronic and nanophotonic applications,” said Dr. Pradeepkumar.

Two ANSTO scientists, Dr. David Cortie and Dr. Anton Le Brun, enabled the research at ANSTO by integrating the furnace with Spatz.

The Neutron Scattering Sample Environment and Scientific Operations team supported the process by integrating the furnace onto Spatz and fabricating the special sample holders. Both were essential to the success of the experiments.

“To the best of our knowledge, this is the highest temperature neutron reflectometry study that has ever been recorded, and it is a relatively unique capability internationally,” said Dr. Le Brun.

“It follows from some pioneering work done by Holt and colleagues at the ISIS Pulsed Neutron Source in England in the late 1990’s.”

The Spatz instrument was transferred from HZB Berlin and configured at the Center in 2020. The large open plan nature of the instrument allows it to accommodate a range of larger sample environments.

“I am really excited by the new opportunities for high temperature reflectometry work,” said Dr. Cortie.

“This capacity will allow a range of important thin film processes to be studied with neutron reflectometry for the first time, to reveal nanoscale insights that are hidden from many other probes. There are already a number of related thin film studies underway at the Australian Center for Neutron Scattering.”

Provided by
Australian Nuclear Science and Technology Organisation (ANSTO)


See also  New nanotherapy targets artery inflammation in cardiovascular disease


Source link

extreme Films reflectometry studying temperatures thin
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

The Benefits of Using XRD to Analyze Thin Films

News

Novel coupled nanopore platform offers greater precision for detecting molecules

News

New gold nanoparticle-based therapy shows promise in colorectal cancer treatment

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Nanoporous Graphene in Battery Research

December 14, 2023

Transparency window appears in an ensemble of ions

August 11, 2023

Light-induced symmetry changes in tiny crystals allow researchers to create materials with tailored properties

March 29, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel