Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

The Future of Needle-Free Immunization

May 28, 2025

Nanoparticle-cell interface enables electromagnetic wireless programming of mammalian transgene expression

May 28, 2025

Finely-tuned TiO₂ nanorod arrays enhance solar cell efficiency

May 28, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Study unveils key dynamics of 2D nanomaterials with view to larger-scale production
News

Study unveils key dynamics of 2D nanomaterials with view to larger-scale production

February 11, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Study unveils key dynamics of 2D nanomaterials with view to larger-scale production
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Credit: Mario Norton/Rice University

A team of Rice University researchers mapped out how flecks of 2D materials move in liquid ⎯ knowledge that could help scientists assemble macroscopic-scale materials with the same useful properties as their 2D counterparts.

“Two-dimensional nanomaterials are extremely thin—only several atoms thick—sheet-shaped materials,” said Utana Umezaki, a Rice graduate student who is a lead author on a study published in ACS Nano. “They behave very differently from materials we’re used to in daily life and can have really useful properties: They can withstand a lot of force, resist high temperatures and so on. To take advantage of these unique properties, we have to find ways to turn them into larger-scale materials like films and fibers.”

In order to maintain their special properties in bulk form, sheets of 2D materials have to be properly aligned ⎯ a process that often occurs in solution phase. Rice researchers focused on graphene, which is made up of carbon atoms, and hexagonal boron nitride, a material with a similar structure to graphene but composed of boron and nitrogen atoms.

“We were particularly interested in hexagonal boron nitride, which is sometimes called ‘white graphene’ and which, unlike graphene, doesn’t conduct electricity but has high tensile strength and is chemically resistant,” said Angel Martí, a professor of chemistry, bioengineering, materials science and nanoengineering and chair of Rice’s chemistry department. “One of the things that we realized is that the diffusion of hexagonal boron nitride in solution was not very well understood.

Rice research unveils key dynamics of 2D nanomaterials with view to larger-scale production
The researchers used a fluorescent surfactant, i.e. glowing soap, to tag the nanomaterial samples and render their motion visible. Credit: Jeff Fitlow/Rice University

“In fact, when we consulted the literature, we found that the same was true for graphene. We couldn’t find an account of diffusion dynamics at the single molecule level for these materials, which is what motivated us to tackle this problem.”

See also  “Wonder Material” Graphene Verified Safe in Groundbreaking Human Study

The researchers used a fluorescent surfactant, i.e. glowing soap, to tag the nanomaterial samples and render their motion visible. Videos of this motion allowed researchers to map out the trajectories of the samples and determine the relationship between their size and how they move.

“From our observation, we found an interesting trend between the speed of their movement and their size,” Umezaki said. “We could express the trend with a relatively simple equation, which means we can predict the movement mathematically.”

Graphene was found to move slower in the liquid solution, possibly due to the fact that its layers are thinner and more flexible than hexagonal boron nitride, giving rise to more friction. Researchers believe that the formula derived from the experiment could be used to describe how other 2D materials move in similar contexts.

“Understanding how diffusion in a confined environment works for these materials is important because ⎯ if we want to make fibers, for example ⎯ we extrude these materials through very thin injectors or spinnerets,” Martí said. “So this is the first step toward understanding how these materials start to assemble and behave when they are in this confined environment.”

As one of the first studies to investigate the hydrodynamics of 2D nanosheet materials, the research helps fill a gap in the field and could be instrumental to overcoming 2D material fabrication challenges.

“Our final objective with studying these building blocks is to be able to generate macroscopic materials,” Martí said.

Anatoly Kolomeisky, professor of chemistry and chemical and biomolecular engineering at Rice, and Matteo Pasquali, the A.J. Hartsook Professor of Chemical and Biomolecular Engineering and professor of chemistry and of materials science and nanoengineering, are corresponding authors on the study.

See also  Innovative platform utilizes 3D engineered nanofiber membrane

Provided by
Rice University



Source link

Dynamics Key largerscale Nanomaterials Production study Unveils view
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

The Future of Needle-Free Immunization

May 28, 2025

Nanoparticle-cell interface enables electromagnetic wireless programming of mammalian transgene expression

May 28, 2025

Finely-tuned TiO₂ nanorod arrays enhance solar cell efficiency

May 28, 2025

Different DLS-Based Systems Can Give Us Different Size Results

May 27, 2025

2D Janus heterobilayers lead the way

May 27, 2025

Drug-loaded nanoparticles can enhance precision and safety of ultrasound tumor treatment

May 27, 2025

Comments are closed.

Top Articles
News

Taking A Closer Look at Zeolites With Electron Microscopy

News

Nano-Pocket Captures Target Molecules in New, Sensitive SERS

News

Researchers construct a highly efficient photocatalytic system based on titanium dioxide nanomaterials

Editors Picks

The Future of Needle-Free Immunization

May 28, 2025

Nanoparticle-cell interface enables electromagnetic wireless programming of mammalian transgene expression

May 28, 2025

Finely-tuned TiO₂ nanorod arrays enhance solar cell efficiency

May 28, 2025

Different DLS-Based Systems Can Give Us Different Size Results

May 27, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

The Challenges with Engineering Functional Nanopores

November 21, 2023

Hidden transport pathways in graphene confirmed, paving the way for next-generation device design

January 22, 2025

New capabilities in DNA nanostructure self-assembly eliminate need for extreme heating and controlled cooling

March 21, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel