Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Study reveals surprisingly simple method for determining exchange energy in 2D materials
News

Study reveals surprisingly simple method for determining exchange energy in 2D materials

July 17, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
New method for determining exchange energy in 2D materials
The two-dimensional semiconductor material molybdenum disulfide is filled with electrons (red spheres). The electron-electron interaction causes the spins of all electrons (red arrows) to align in the same direction. Credit: N. Leisgang, Harvard University, University of Basel/Scixel

Researchers from the University of Basel have looked at how the ferromagnetic properties of electrons in the two-dimensional semiconductor molybdenum disulfide can be better understood. They revealed a surprisingly simple way of measuring the energy needed to flip an electron spin.

Ferromagnetism is an important physical phenomenon that plays a key role in many technologies. It is well-known that metals such as iron, cobalt and nickel are magnetic at room temperature because their electron spins are aligned in parallel—and it is only at very high temperatures that these materials lose their magnetic properties.

Researchers led by Professor Richard Warburton of the Department of Physics and the Swiss Nanoscience Institute of the University of Basel have shown that molybdenum disulfide also exhibits ferromagnetic properties under certain conditions. When subjected to low temperatures and an external magnetic field, the electron spins in this material all point in the same direction.

In their latest study, published in the journal Physical Review Letters, the researchers determined how much energy it takes to flip an individual electron spin within this ferromagnetic state. This exchange energy is significant because it describes the stability of the ferromagnetism.

Detective work yields a simple solution

“We excited molybdenum disulfide using a laser and analyzed the spectral lines it emitted,” explains Dr. Nadine Leisgang, main author of the study. Given that each spectral line corresponds to a specific wavelength and energy, the researchers were able to determine the exchange energy by measuring the separation between specific spectral lines.

They found that in molybdenum disulfide, this energy is only about 10 times smaller than in iron—indicating that the material’s ferromagnetism is highly stable.

See also  What Are Semiconducting Polymer Nanomaterials?

“Although the solution seems simple, it took considerable detective work to allocate the spectral lines correctly,” says Warburton.

Two-dimensional materials

2D materials play a key role in materials research thanks to their special physical properties, which are the result of quantum mechanical effects. They can also be stacked to form van der Waals heterostructures.

In the example seen in this study, the molybdenum disulfide layer is surrounded by hexagonal boron nitride and graphene. These layers are held together by weak van der Waals bonds and are of interest in the fields of electronics and optoelectronics thanks to their unique properties. Understanding their electrical and optical properties is vital in order to apply them to future technologies.

Provided by
University of Basel



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Comments are closed.

Top Articles
News

2D materials with ‘twist’ show unexpected electronic behavior that defy theoretical predictions

Research

New Study Reveals Gold Nanoparticles’ Efficacy Against Biofilms

News

‘Molecular jackhammers’ can rupture melanoma cells’ membrane, study shows

Editors Picks

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

New technology to assemble three-dimensional structures using gold nanoparticles confined in nanocapsules

December 20, 2023

Next-Gen Electronics Transformed: MIT’s 2D Integration Breakthrough

March 10, 2024

Nanotechnology in Biodiversity Conservation

May 13, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel