Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Study reveals potential of superparaelectric materials as gate dielectrics in next-gen microelectronics
News

Study reveals potential of superparaelectric materials as gate dielectrics in next-gen microelectronics

June 4, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Study reveals potential of superparaelectric materials as gate dielectrics in next-gen microelectronics
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Using a superparaelectric high k dielectric to solve the trilemma in a gate layer (“polarizability”–”scalability”–”insulation robustness”). (a) “low (k) and scalable” simple oxide gate layers facing the challenge of electrical breakdown with a physical thickness approaching the quantum tunneling limit; (b) “high (k) and non-scalable” complex polar oxide gate layers facing the same challenge as in (b), with a higher threshold of the smallest physical thickness due to a lower breakdown strength (Ebd); (c) “high (k) and scalable” SPE gate layers having both a thickness-scalable high k and a large Ebd. Credit: Journal of Advanced Ceramics, Tsinghua University Press

In our communication-centered society, Moore’s law sets a high expectation for the increasing rate of the packing density of Si-based transistors. This drives the search for thickness-scalable high dielectric constant (high k) gate layers. Current material candidates, from simple binary oxides to complex polar oxides, all have failed to solve the “polarizability-scalability-insulation robustness” trilemma, hence contributing to the sum total of issues threatening the continuation of the Moore’s law.

A team of material scientists led by Jun Ouyang from Qilu University of Technology in Jinan, China recently proposed a solution to this trilemma on gate layers, which is an ultrathin film of a ferroelectric oxide in its superparaelectric (SPE) state.

The team published their research article in Journal of Advanced Ceramics on April 30, 2024.

“In the SPE, its polar order becomes local and is dispersed in an amorphous matrix with a crystalline size down to a few nanometers, leading to an excellent dimensional scalability and a good field-stability of the k value,” said Jun Ouyang, senior author of the research article, professor in the School of Chemistry and Chemical Engineering and team leader of Advanced Energy Materials and Chemistry at Qilu University of Technology.

“As an example, a stable high k value (37±3) is shown in ultrathin SPE films of (Ba0.95,Sr0.05)(Zr0.2,Ti0.8)O3 (BSZT) sputter-deposited on LaNiO3-buffered Pt/Ti/ SiO2/(100)Si down to a 4 nm thickness at room temperature, leading to a small equivalent oxide thickness (EOT) of ~0.46 nm.”

The research team analyzed the average diameter of the nanometer polar clusters (NPCs), the feature size for the short-range ordered SPE film, as a function of the film thickness. They found that the film’s NPC size, which is positively correlated with the film’s k value, is dictated by the temperature of the sputter-deposition, not the film thickness.

See also  Using molecular 'cookie cutters' to view membrane protein organization

“These observations suggest that the dominant factor for a scalable k in a SPE dielectric is its NPC size, not the film thickness usually being investigated. It is such a small feature size that has led to a good thickness scalability of k in a SPE ultrathin film, as opposed to a non-scalable k in its ferroelectric counterpart,” Jun Ouyang said.

“Furthermore, through studies of the temperature dependence of k (k–T curves), we estimated the critical NPC size for the superparaelectric-to-paraelectric (SPE-PE) transition in the BSZT film, i.e., its theoretical scalability limit as a gate layer. This limit is between 1.3 and 1.8 nm, which is consistent with the thermodynamic prediction for the BSZT material.”

The research team outlines other unique properties of the superparaelectric BSZT films endowed by their aforementioned microstructure of “well-dispersed nanometer polar clusters (NPCs)”.

These properties include a high breakdown strength (~10.5 MV·cm−1 for the 4 nm film), which ensures a low leakage current for the operation of the complementary metal oxide semiconductor (CMOS) gate. Moreover, a high electrical fatigue resistance, i.e., charge–discharge stability, was displayed by the SPE films. These results reveal a great potential of superparaelectric materials as gate dielectrics in the next-generation microelectronics.

The research team expects this work to spur development of new superparaelectric-based gate layers to further decrease the EOT value and help continue Moore’s law.

Provided by
Tsinghua University Press


Source link

dielectrics Gate materials microelectronics nextgen Potential reveals study superparaelectric
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Comments are closed.

Top Articles
News

Angle-dependent holograms made possible by metasurfaces

News

Utilizing SECCM for Nanoscale Electrochemical Studies

New capabilities in DNA nanostructure self-assembly eliminate need for extreme heating and controlled cooling

Editors Picks

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Using Graphene in Water Sensors to Enhance Pollution Detection

September 10, 2023

Mussel-Inspired Technique Paves Way for Efficient Nanoparticle Assembly

May 16, 2024

UV Tape That Transfers Wonder Materials Without the Hassle

February 9, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel