Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Study explores mechanical properties of molybdenum disulfide nanoribbons with armchair edges
News

Study explores mechanical properties of molybdenum disulfide nanoribbons with armchair edges

September 26, 2023No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Study explores mechanical properties of molybdenum disulfide nanoribbons with armchair edges
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Mechanical properties of single-layer MoS2 nanoribbons investigated using a new micromechanical measurement method.  Image Caption: (Upper left) Illustration showing the process of contacting a tungsten (W) tip to the edge of MoS2 multilayer and peeling off the outermost single-layer MoS2 nanoribbon. (Lower left) TEM image of the single-layer MoS2 nanoribbon observed from the cross-section and from the plane. (Middle) schematic illustration of the in situ TEM experiment on the nanoribbon with armchair edges, and (right) Young’s modulus of the nanoribbon as a function of its width. Credit: Yoshifumi Oshima from JAIST

The properties of nanoribbon edges are important for their applications in electronic devices, sensors, and catalysts. A group of scientists from Japan and China studied the mechanical response of single-layer molybdenum disulfide nanoribbons with armchair edges using in situ transmission electron microscopy.

They showed that the nanoribbon Young’s modulus varied inversely with its width below the width of 3nm, indicating a higher bond stiffness for the armchair edges. Their work, published in the journal Advanced Science, was co-authored by Associate Professor Kenta Hongo and Professor Ryo Maezono from JAIST and Lecturer Chunmeng Liu and Lecturer Jiaqi Zhang from Zhengzhou University, China.

Sensors have become ubiquitous in the modern world, with applications ranging from detecting explosives, measuring physiological spikes of glucose or cortisol non-invasively to estimating greenhouse gas levels in the atmosphere.

The primary technology required for sensors is a mechanical resonator. Traditionally, quartz crystals have been used for this purpose owing to their high rigidity and easy availability. However, this technology has recently given way to advanced nanomaterials. One such promising material is the single-walled molybdenum disulfide (MoS2) nanoribbon.

Characterizing the physical and chemical properties of nanoribbon edges is crucial for their applications in electronic devices, sensors, and catalysts. However, the mechanical response of MoS2 nanoribbons—expected to be dependent on their edge structure—has remained unexplored, hindering their practical implementation in thin resonators.

Against this background, a group of scientists from Japan and China, led by Professor Yoshifumi Oshima from Japan Advanced Institute of Science and Technology (JAIST), investigated the mechanical properties—namely the Young’s modulus—of single-layer MoS2 nanoribbons with armchair edges as a function of their width using a micromechanical measurement method.

See also  Study details how biomimetic nanomaterials can minimize damage after a heart attack

Prof. Oshima says, “We have developed the world’s first micromechanical measurement method to clarify the relationship between the atomic arrangement of atomic-scale materials and their mechanical strength by incorporating a quartz-based length extension resonator (LER) in an in situ transmission electron microscopy (TEM) holder.”

Since the resonance frequency of a quartz resonator changes when it senses contact with a material, the equivalent spring constant of the material can be estimated with high precision by the change in this resonance frequency. Moreover, it is possible to capture high-resolution TEM images as the LER vibration amplitude necessary for the measurement is as small as 27 pm. Consequently, the novel method developed by the researchers managed to overcome the shortcomings of conventional techniques, achieving high-precision measurements.

The researchers first synthesized a single-layer MoS2 nanoribbon by peeling off the outermost layer of the folded edge of an MoS2 multilayer using a tungsten tip. The single-layer nanoribbon was supported between the multilayer and the tip.

The TEM image of this MoS2 nanoribbon revealed that its edge had an armchair structure. “The width and length of the nanoribbon were also measured from the image, and the corresponding equivalent spring constant was determined from the frequency shift of the LER to obtain the Young’s modulus of this nanoribbon,” said Lecturer Chunmeng Liu.

The researchers found that the Young’ modulus of the single-layer MoS2 nanoribbons with armchair edges was dependent on their width. While it remained constant around 166 GPa for wider ribbons, it showed an inverse relation to the width for ribbons below 3nm in width, increasing from 179 GPa to 215 GPa as the nanoribbon width decreased from 2.4nm to 1.1nm. The researchers attributed this to a higher bond stiffness for the edges compared to that of the interior.

See also  The future of health care wearables

Density functional theory calculations performed by the researchers for explaining their observation revealed that the Mo atoms buckled at the armchair edge, which resulted in electron transfer to the S atoms on both sides. This, in turn, increased the Coulombic attraction between the two atoms, enhancing the edge strength.

This study sheds important light on the mechanical properties of MoS2 nanoribbons, which could facilitate the design of nanoscale, ultra-thin mechanical resonators.

“Nanosensors based on such resonators can be integrated into smartphones and watches, which will enable people to monitor their environment as well as communicate the sense of taste and smell in the form of numerical values,” concludes Lecturer Jiaqi Zhang.

Provided by
Japan Advanced Institute of Science and Technology



Source link

armchair disulfide edges explores Mechanical Molybdenum nanoribbons properties study
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Comments are closed.

Top Articles
Medical

Scientists discover new mechanism for kidney cell renewal

News

Photochemical method enhances luminescence in gold nanoprobes for bio-imaging

Medical

Nanobots for bladder cancer treatment, promising high efficacy and targeted delivery

Editors Picks

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

New method captures the stochastic dynamics in coherent X-ray imaging at the nanoscale

September 14, 2024

Non-Magnetic Motors for Precision Motion Control

December 1, 2023

Study unveils key dynamics of 2D nanomaterials with view to larger-scale production

February 11, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel