Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Simulating how electrons move through biological nanowires
News

Simulating how electrons move through biological nanowires

November 12, 2023No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Simulating how electrons move through biological nanowires
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
A rendering of a protein nanowire (yellow) cutting through a protein blob (gray) with electron carriers (orange) traveling along it. Credit: Martin Kulke

The movement of electrons across wires is what allows us to use electricity every day. Biological nanowires, microscopic wires made of proteins, have caught researchers’ attention for their ability to carry electrons over long distances.

In a study published in Small by the Vermaas lab at the MSU-DOE Plant Research Laboratory, researchers expand our understanding of biological nanowires through the use of computer simulations.

Martin Kulke, first author of the study, accompanied by the Vermaas lab team, created simulations of crystals using data from the real-life experiments in the PRL Kramer lab, where they pointed a light source at a nanocrystal made up of proteins and calculated how fast excited electrons traveled through it. The real question was why electron transfer was getting slower with increasing temperature, which usually accelerates processes at the nanoscale.

One potential idea was that the distances electrons would need to jump within the nanocrystal might increase with temperature, slowing down how fast they could move through the protein.

“We simulated these protein nanocrystals at different temperatures to test this idea,” said Josh Vermaas, primary investigator for this study and assistant professor in the Department of Biochemistry and Molecular Biology and at the PRL. “What we found is that the distance changes across different temperatures are not so dramatic on their own.”

Simulating how electrons move through nanowires
In this representation, each of the 96 proteins in the nanocrystal are a different color. The electrons travel from heme group to heme group inside the protein. The hemes are shown in a stick representation, with gray for the carbons, blue for the nitrogens and a pink iron atom. Credit: Vermaas lab

When variables other than temperature were manipulated, the researchers started to see some interesting action from the electrons’ hops within the nanowire. The nanowire protein network was made longer, shorter, thicker and thinner to identify bottlenecks to the electron flow within the nanocrystal.

See also  Development of organic semiconductors featuring ultrafast electrons

“We found that in biological nanowires, the electron transport is based on the motion of the proteins in the wire,” Kulke said. “What that means is in the end, the longer you make those nanowires, the less electron transport you get through them and the thicker you make them, the more electron transport you get through them.”

The use of biological nanowires is speculative at the moment, but understanding how they can be constructed to allow for more electron flow is crucial to future endeavors using them to connect biological processes to conventional electronics.

Provided by
Michigan State University



Source link

biological Electrons move nanowires Simulating
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Comments are closed.

Top Articles
Medical

Innovative Subak tool offers affordable solution for detecting nuclease digestion

News

Neutralizing electronic inhomogeneity in cleaved bulk MoS₂

News

Improvement of ultra-broadband photodetection with a device based on twisted double bilayer graphene

Editors Picks

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

MXene’s path to revolutionizing energy storage and more

November 30, 2023

Scientists enhance localized surface plasmon resonance through oxide particle superlattices

February 16, 2025

Achieving the goal with UV-assisted atomic layer deposition

August 15, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel