Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Scientists propose method that imparts elastic recovery to ferroelectric materials
News

Scientists propose method that imparts elastic recovery to ferroelectric materials

August 9, 2023No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Scientists propose method that imparts elastic recovery to ferroelectric materials
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
The elastic ferroelectrics under 70% strain. Credit: NIMTE

A research group led by Prof. Li Runwei at the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS) have proposed a “slight cross-linking” method that imparts elastic recovery to ferroelectric materials. The study was published in Science.

Ferroelectric materials are very useful for applications such as data storage and processing, sensing, energy conversion, and optoelectronics, etc., making them highly desirable in mobile phones, tablets and other electronic devices for everyday use.

After stress is relieved, however, conventional ferroelectric materials exhibit poor elastic recovery—typically less than 2%, thus tend to be either brittle (ferroelectric ceramics) or plastic (ferroelectric polymers).

The ferroelectric properties of these materials are mainly due to their crystalline regions, which lack intrinsic elasticity.

To solve the dilemma of ferroelectric response and elastic recovery, the researchers developed a precise “slight cross-linking” method.

By using poly(vinylidene fluoride–trifluoroethylene) as the matrix material and soft-long-chain polyethylene oxide diamine as the cross-linker, the researchers established a network structure in linear ferroelectric polymers.

By precisely controlling the cross-linking density at 1–2%, the cross-linked ferroelectric film mainly exhibited a β-phase crystalline structure and was uniformly dispersed in the cross-linked polymer network.

Under stress, the network structure can evenly distribute and bear external forces, thereby mitigating damage to the crystalline regions. Thus, these newly developed ferroelectrics combine elasticity with relatively high crystallinity. Experimental results also showed that the cross-linked film retained a stable ferroelectric response and elastic recovery even under strains up to 70%.

“Based on their study,” said Prof. Xiong Rengen, an internationally renowned expert in ferroelectric materials, “Gao et al. have established a new research direction, elastic ferroelectrics.”

See also  Advanced microscopy method reveals hidden world of nanoscale optical metamaterials

Elastic ferroelectrics such as these, with excellent resistance to mechanical and ferroelectric fatigue, have broad application prospects in wearable electronics and smart health care.

Provided by
Chinese Academy of Sciences



Source link

elastic ferroelectric imparts materials method propose recovery Scientists
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Modular protein adapter technology enables exosome-based precision drug delivery

May 6, 2025

Comments are closed.

Top Articles
Research

The Fight Against Superbugs and the Future of Antimicrobial Surfaces

Physicists track the mass and temperature of a levitated nanoparticle

Research

Anticipating Nanotechnology’s Future: Projections for Funding and Emerging Trends

Editors Picks

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Researchers take important step toward genetic therapy for hereditary conditions

March 5, 2024

Ultrafast Laser Technology Miniaturized on Tiny Photonic Chips

November 22, 2023

New research may make future design of nanotechnology safer with fewer side effects

October 13, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel