Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Scientists identify new class of semiconductor nanocrystals
News

Scientists identify new class of semiconductor nanocrystals

August 11, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Scientists identify new class of semiconductor nanocrystals
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Credit: ACS Nano (2024). DOI: 10.1021/acsnano.4c02905

U.S. Naval Research Laboratory (NRL) scientists confirm the identification of a new class of semiconductor nanocrystals with bright ground-state excitons, a significant advancement in the field of optoelectronics, in an article published in the American Chemical Society (ACS) journal ACS Nano.

The groundbreaking theoretical research could revolutionize the development of highly efficient light-emitting devices and other technologies.

Generally, the lowest-energy exciton in nanocrystals is poorly emitting, earning the name “dark” exciton. Because it slows the emission of light, the dark exciton limits the performance of nanocrystal-based devices like lasers or light-emitting diodes (LEDs). Scientists have long sought to overcome the dark exciton.

“We set out to find new materials in which the exciton ordering is inverted, so that the lowest-energy exciton is bright,” said John Lyons, Ph.D., from the Theory of Advanced Functional Materials Section. “Searching through open-source databases of materials using criteria informed by our theoretical modeling, we identified over 150 targets. We further narrowed this list with advanced first-principles calculations, ending up with 28 candidates for bright-exciton nanomaterials.”

More detailed modeling of these materials indicates that at least four can yield bright ground-state excitons in nanocrystals. “This discovery, made in collaboration with Prof. David Norris from Federal Institute of Technology (ETH) Zurich and Peter Sercel, Ph.D., from the Center for Hybrid Organic-Inorganic Semiconductors for Energy (CHOISE), could pave the way for the development of ultrabright and highly efficient light-emitting devices, lasers, and other technologies,” Lyons said.

Alexander Efros, Ph.D., a senior scientist, Materials Science division and the senior author on the paper, elaborated on the implications of the research.

See also  Researchers engineer new approach for controlling thermal emission

“In our research, we have identified several bright-exciton materials that can emit light across a broad spectrum, from infrared to ultraviolet,” said Efros. “This versatility makes them very useful for optoelectronic applications. The capability to engineer nanocrystals with bright excitonic states across this wide range opens new avenues for creating better and more efficient LEDs, solar cells, and photodetectors.”

By resolving the dark-exciton problem, NRL scientists hope to stimulate the large nanomaterial community to attack bright-exciton nanostructures, an area that has been stalled for too long. Today, three of these materials are being grown at NRL as part of the Nanoscience Institute Program’s Bright Nanocrystal Emitters initiative aiming to conclusively demonstrate bright-exciton behavior in the lab and leverage it for future naval technologies.

“Our findings demonstrate the power of combining high-throughput computational screening, pen-and-paper theory, and high-accuracy calculations of electronic structure,” said Michael Swift, Ph.D. “No one technique would be enough on its own, but together we discovered new ultrabright nanocrystals and unlocked the power of the bright exciton across unexplored classes of materials.”

The Theory of Advanced Functional Materials Section performs basic and applied research on functional, structural, biological, and electronic materials systems. The section pioneers new methods for simulating materials and systems, including original development of computational and theoretical techniques, modification of existing approaches, and application of established methodologies to new materials and areas. The goal of the section is to use theory and simulation to understand, improve and develop materials of present and future naval importance.

Provided by
Naval Research Laboratory


See also  Scientists develop green method for producing bactericidal copper oxide nanoparticles from noni plant


Source link

class identify nanocrystals Scientists Semiconductor
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Measuring Sound Waves in Nanostructures

News

Scientists create black arsenic visible infrared photodetectors

News

Is Nanotechnology the Future of Gene Manipulation?

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Scientists grow human mini-lungs as animal alternative for nanomaterial safety testing

April 26, 2024

Hybrid surface combines hydrophobic nanowires and hydrophilic channels to prevent condensation flooding

April 29, 2025

Global Metal Nano Particles Market Size Set to Amplify by 2028

October 10, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel