Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Spontaneous symmetry breaking in electron systems proves elusive

June 3, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Scientists enhance localized surface plasmon resonance through oxide particle superlattices
News

Scientists enhance localized surface plasmon resonance through oxide particle superlattices

February 16, 2025No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Scientists enhance localized surface plasmon resonance through oxide particle superlattices
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Characterization of oxygen vacancy properties generated by Cu2O1-x superlattice structures and corresponding disordered structures. Credit: Yao Chang

A research group led by Prof. Yang Liangbao from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences has enhanced localized surface plasmon resonance (LSPR) by studying Cu₂O₁₋ₓ superlattices with oxygen vacancies, providing new insights into vacancy doping in semiconductors and LSPR induction in metal oxide nanoparticles. The findings are published in Nano Letters.

LSPR refers to the collective oscillation of free electrons in metal nanoparticles, which results in a resonance phenomenon that absorbs and scatters light at specific wavelengths. This unique optical property enables LSPR to be applied in various fields such as biosensing, where it enhances detection sensitivity, and in photocatalysis, where it facilitates light-driven chemical reactions. Additionally, LSPR-based materials show promise in color tuning and energy harvesting applications.

The researchers have long focused on the study of LSPR enhancement. Building on this foundation, they advanced their research by investigating the potential of Cu₂O₁₋ₓ superlattices to enhance LSPR effects.

Through a series of carefully designed experiments, they successfully synthesized Cu₂O₁₋ₓ superlattice structures that were rich in oxygen vacancies, and observed a remarkable enhancement of LSPR.

They showed that these oxygen vacancies play a crucial role in increasing the carrier concentration and modifying the electronic band structure of the material.

Scientists enhance localized surface plasmon resonance through oxide particle superlattices
Changes in the properties of Cu2O NPs after forming Cu2O1-x superlattice structures, and a schematic diagram of the mechanism for LSPR generation. Credit: Yao Chang

Specifically, the oxygen vacancies caused the valence band edge to shift closer to the Fermi level, while narrowing the band gap. This structural alteration induced intraband transitions that generated strong LSPR modes and significantly enhanced the electromagnetic field.

As a result, the material showed excellent performance in surface-enhanced Raman Spectroscopy detection.

See also  Visualizing electron flow motivates new nanoscale devices inspired by airplane wings

This study provides a novel perspective on vacancy doping in semiconductors and opens new avenues for inducing LSPR in metal oxide nanoparticles.

Provided by
Chinese Academy of Sciences



Source link

Enhance localized oxide Particle plasmon resonance Scientists superlattices surface
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Spontaneous symmetry breaking in electron systems proves elusive

June 3, 2025

Improving Crop Tolerance to Drought and Heat Using Nanomaterials

June 3, 2025

Crystal-modifying agent piracetam provides scalable strategy for high-efficiency all-perovskite tandem solar cells

June 3, 2025

Phonon decoupling in naturally occurring mineral enables subatomic ferroelectric memory

June 2, 2025

Comments are closed.

Top Articles
News

High-refractive-index-modulation nanocomposites for augmented reality displays

News

Nanoscale Tools for Tumor Physiology Research

News

“Wonder Material” Graphene Verified Safe in Groundbreaking Human Study

Editors Picks

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Spontaneous symmetry breaking in electron systems proves elusive

June 3, 2025

Improving Crop Tolerance to Drought and Heat Using Nanomaterials

June 3, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Designer peptoids mimic nature’s helices

May 20, 2024

What Are Semiconducting Polymer Nanomaterials?

January 28, 2025

Micro, modular, mobile—DNA-linked microrobots offer new possibilities in medicine and manufacturing

January 16, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel