Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

The Future of Needle-Free Immunization

May 28, 2025

Nanoparticle-cell interface enables electromagnetic wireless programming of mammalian transgene expression

May 28, 2025

Finely-tuned TiO₂ nanorod arrays enhance solar cell efficiency

May 28, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»Medical»Scientists discover new mechanism for kidney cell renewal
Medical

Scientists discover new mechanism for kidney cell renewal

August 10, 2023No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Scientists discover new mechanism for kidney cell renewal
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

University of Texas at Dallas scientists have discovered a previously unknown “housekeeping” process in kidney cells that ejects unwanted content, resulting in cells that rejuvenate themselves and remain functioning and healthy.

The self-renewal process, which is fundamentally different from how other bodily tissues are thought to regenerate, helps explain how, barring injury or disease, the kidneys can remain healthy for a lifetime. The researchers described the mechanism in a study published April 17 in Nature Nanotechnology.

Unlike the liver and skin, where cells divide to create new daughter cells and regenerate the organ, cells in the proximal tubules of the kidney are mitotically quiescent -; they do not divide to create new cells. In cases of mild injury or disease, kidney cells do have limited repair capabilities, and stem cells in the kidney can form new kidney cells, but only up to a point, said Dr. Jie Zheng, professor of chemistry and biochemistry in the School of Natural Sciences and Mathematics and co-corresponding author of the study.

In most scenarios, if kidney cells are severely injured, they will die, and they cannot regenerate. Your kidney will just fail sooner or later. That’s a big challenge in health management for kidney disease. All we can do currently is slow down the progression to kidney failure. We cannot easily repair the organ if it’s injured severely or by chronic disease.

That’s why discovering this self-renewal mechanism is probably one of the most significant findings we’ve made so far. With excellent core facilities and dedicated staff, UTD is a great place to do such cutting-edge research.”

Dr. Jie Zheng, a Distinguished Chair in Natural Sciences and Mathematics

Further research may lead to improvements in nanomedicine and early detection of kidney disease, he said.

See also  Researchers develop groundbreaking technique to detect chemoresistance using ultrasound

An unexpected finding

The researchers said their discovery took them by surprise.

For 15 years, Zheng has been investigating the biomedical use of gold nanoparticles as imaging agents, for fundamental understanding of glomerular filtration, for early detection of liver disease, and for targeted delivery of cancer drugs. Part of that work has focused on understanding how gold nanoparticles are filtered by the kidneys and cleared from the body through urine.

Research has shown that gold nanoparticles generally pass unscathed through a structure in the kidney called the glomerulus and then travel into proximal tubules, which make up over 50% of the kidney. Proximal tubular epithelial cells have been shown to internalize the nanoparticles, which eventually escape those cells to be excreted in urine. But just how they escape the cells has been unclear.

In December 2021, Zheng and his chemistry team -; research scientist and lead study author Yingyu Huang PhD’20 and co-corresponding author Dr. Mengxiao Yu, research associate professor -; were examining gold nanoparticles in proximal tubular tissue samples using an optical microscope, but they switched to one of the University’s electron microscopes (EM) for better resolution.

“Using the EM, we saw gold nanoparticles encapsulated in lysosomes inside of large vesicles in the lumen, which is the space outside the epithelial cells,” Yu said.

Vesicles are small fluid-filled sacks found both inside and outside of cells that transport various substances.

“But we also observed the formation of these vesicles containing both nanoparticles and organelles outside of cells, and it was not something we had seen before,” Yu said.

See also  Scientists discover new method for generating metal nanoparticles to use as catalysts

The researchers found proximal tubular cells that had formed outwardly facing bulges in their luminal membranes that contained not only gold nanoparticles but also lysosomes, mitochondria, endoplasmic reticulum and other organelles typically confined to a cell’s interior. The extruded contents were then pinched off into a vesicle that floated off into the extracellular space.

“At that moment, we knew this was an unusual phenomenon,” Yu said. “This is a new method for cells to remove cellular contents.”

A new renewal process

The extrusion-mediated self-renewal mechanism is fundamentally different from other known regenerative processes -; such as cell division -; and housecleaning tasks like exocytosis. In exocytosis, foreign substances such as nanoparticles are encapsulated in a vesicle inside the cell. Then, the vesicle membrane fuses with the inside of the cell’s membrane, which opens to release the contents to the outside.

“What we discovered is totally different from the previous understanding of how cells eliminate particles. There is no membrane fusion in the extrusion process, which eliminates old content from normal cells and allows the cells to update themselves with fresh contents,” Huang said. “It happens whether foreign nanoparticles are present or not. It’s an intrinsic, proactive process these cells use to survive longer and function properly.”

Zheng said their findings open up new areas of study. For example, epithelial cells, like those in the proximal tubules, are found in other tissues, such as the walls of arteries and in the gut and digestive tract.

“In the field of nanomedicine, we want to minimize accumulation of nanoparticles in the body as much as possible. We don’t want them to get stuck in the kidneys, so it’s very important to understand how nanoparticles are eliminated from the proximal tubules,” Zheng said. “Also, if we could learn how to regulate or monitor this self-renewal process, we might find a way to keep kidneys healthy in patients with high blood pressure or diabetes.

See also  Scientists develop composite accelerometer for extreme environments

“If we could develop ways to detect the signature of this process noninvasively, perhaps it could be an indicator of early kidney disease.”

The research was funded by the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK124881, R01DK115986, R01DK126140 and R01DK103363), the National Science Foundation and the Cancer Prevention and Research Institute of Texas.

Source:

University of Texas at Dallas

Journal reference:

Huang, Y., et al. (2023). Proximal tubules eliminate endocytosed gold nanoparticles through an organelle-extrusion-mediated self-renewal mechanism. Nature Nanotechnology. doi.org/10.1038/s41565-023-01366-7.

Source link

Cell discover kidney mechanism renewal Scientists
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

Scientists have found a way to ‘tattoo’ tardigrades

May 3, 2025

Pt nano-catalyst with graphene pockets enhances fuel cell durability and efficiency

April 21, 2025

Extracellular vesicles as a cellular tracking tool could yield new therapies for polycystic kidney disease

April 14, 2025

Scientists merge two ‘impossible’ materials into new artificial structure

April 11, 2025

Scientists unveil rapid technique for creating uniform polymer nanostructures

March 25, 2025

Comments are closed.

Top Articles
News

Stabilizing precipitate growth at grain boundaries in alloys

Quantum Leap in Ultrafast Electronics Secured by Graphene’s Atomic Armor

News

Researchers use vapor deposition to make covalent organic framework films

Editors Picks

The Future of Needle-Free Immunization

May 28, 2025

Nanoparticle-cell interface enables electromagnetic wireless programming of mammalian transgene expression

May 28, 2025

Finely-tuned TiO₂ nanorod arrays enhance solar cell efficiency

May 28, 2025

Different DLS-Based Systems Can Give Us Different Size Results

May 27, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Utilizing Back-Gate Voltage Biases for 2D Materials

September 8, 2023

Scientists develop composite accelerometer for extreme environments

April 16, 2024

Device malfunctions from continuous current lead to discovery that can improve design of microelectronic devices

September 24, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel