Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Scientists discover new behavior of membranes that could lead to unprecedented separations
News

Scientists discover new behavior of membranes that could lead to unprecedented separations

July 2, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Scientists discover new behavior of membranes that could lead to unprecedented separations
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Nanoscale solutes with only slight differences in size can be separated by membranes with identical pores — if they have enough opportunities to try. Credit: Argonne National Laboratory.

Imagine a close basketball game that comes down to the final shot. The probability of the ball going through the hoop might be fairly low, but it would dramatically increase if the player were afforded the opportunity to shoot it over and over.

A similar idea is at play in the scientific field of membrane separations, a key process central to industries that include everything from biotechnology to petrochemicals to water treatment to food and beverage.

“Separations lie at the heart of so many of the products we use in our everyday lives,” said Seth Darling, head of the Advanced Materials for Energy Water Systems (AMEWS) Center at the U.S. Department of Energy’s (DOE) Argonne National Laboratory. “Membranes are the key to achieving efficient separations.”

Many commercial processes use membranes to separate out different sizes of solutes, which are substances that are dissolved in water or other fluids. Nearly all commercial membranes are polydisperse, which means that their pore sizes are not consistent. For these membranes, it’s nearly impossible to do a sharp separation of materials as different sizes of solutes can fit through different pores.

“Essentially all commercial membranes, all membranes that are actually used for anything, have a wide range of pore sizes—little pores, medium pores and big pores,” Darling said.

Darling and his colleagues at Argonne and the Pritzker School of Molecular Engineering at the University of Chicago have been interested in looking at the properties of isoporous membranes, which are membranes in which all the pores are the same size.

See also  The Nanotech Revolution in Packaging: Amcor and Nfinite Nanotechnology Lead the Charge

Previously, scientists had believed there was a limit to the sharpness of the separations that they could achieve at the nanoscale, not only because of variations in pore size, but also a phenomenon called “hindered transport.”

Hindered transport refers to the internal resistance of the fluid medium as the solute attempts to go through the pore.

“The water in the pore will create drag on a molecule or particle that’s trying to get through, causing it to slow down,” Darling said.

“Those slower solutes appear to be rejected by the membrane. Counter-intuitively, objects even half the size of the pore will end up being rejected about half the time.” Overcoming rejection created by hindered transport would enable unprecedented selectivity in size-based separations, he explained.

“The regime we’re interested in involves pores approximately 10 nanometers in diameter. With a perfect membrane and proper process design, we believe we could separate solutes with as little as a 5% difference in size. Current membranes have no chance to pull that off,” Darling said.

In a new study, Darling and his colleagues uncovered a dynamic that could only be revealed by studying isoporous membranes, and that gives hope for surmounting hindered transport limitations. A paper based on the study appears in the June 20 online edition of Nature Water.

“Until now, scientists had implicitly assumed that each solute only gets one try to go through a pore, and that hindered transport would produce rejection of many solutes that were smaller than the pore size, causing them to remain in the feed stream rather than the output stream,” Darling added.

See also  The Role of Nanotechnology in Endometriosis Treatment

“Although it might seem obvious to some, people never really considered a situation in which the solutes could make multiple attempts to get through a membrane.”

To give the solute molecules multiple chances to get through the pore required cycling the feed solution for multiple weeks.

“Even with an extended period of experimentation, we’re still only seeing individual solutes trying to get through a pore a couple of times on average, but it makes a big difference in moving the separation curve towards a sharper step-like function,” Darling said.

“Given longer time, or more likely an improved process design, we believe we will see a clear, sharp separation right where the pore size matched the solute size.”

The insights learned from isoporous membranes could be applicable to existing membrane materials engineered to increase the number of opportunities for solutes to pass through the pores.

“If these fundamental studies can be successfully transferred to industrial membrane separations, it could have tremendous impact across numerous sectors of our economy,” he said.

Provided by
Argonne National Laboratory



Source link

behavior discover lead membranes Scientists separations Unprecedented
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles

New opportunities for metasurfaces in optoelectronics

News

Enhancing TB Vaccines with Nanotechnology

News

Researchers achieve efficient nutrient delivery to crop leaves through nanomaterial surface roughness engineering

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Optimizing Particle Size Analysis for Light-Absorbing Colloidal Suspensions with the BeNano 180 Zeta Pro

April 14, 2024

Nanotechnology in the fight against viruses

September 27, 2023

Researchers establish commercially viable process for manufacturing with promising new class of metals

May 15, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel