Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Scientists discover nanofabrication of photonic crystals on buried ancient Roman glass
News

Scientists discover nanofabrication of photonic crystals on buried ancient Roman glass

September 23, 2023No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Scientists discover nanofabrication of photonic crystals on buried ancient Roman glass
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Microscopic view of photonic crystals on the surface of ancient Roman glass. Credit: Giulia Guidetti

Some 2,000 years ago in ancient Rome, glass vessels carrying wine or water, or perhaps an exotic perfumes, tumble from a table in a marketplace, and shatter to pieces on the street. As centuries passed, the fragments were covered by layers of dust and soil and exposed to a continuous cycle of changes in temperature, moisture, and surrounding minerals.

Now these tiny pieces of glass are being uncovered from construction sites and archaeological digs and reveal themselves to be something extraordinary. On their surface is a mosaic of iridescent colors of blue, green and orange, with some displaying shimmering gold-colored mirrors.

These beautiful glass artifacts are often set in jewelry as pendants or earrings, while larger, more complete objects are displayed in museums.

For Fiorenzo Omenetto and Giulia Guidetti, professors of engineering at the Tufts University Silklab and experts in materials science, what’s fascinating is how the molecules in the glass rearranged and recombined with minerals over thousands of years to form what are called photonic crystals—ordered arrangements of atoms that filter and reflect light in very specific ways.

Photonic crystals have many applications in modern technology. They can be used to create waveguides, optical switches and other devices for very fast optical communications in computers and over the internet. Since they can be engineered to block certain wavelengths of light while allowing others to pass, they are used in filters, lasers, mirrors, and anti-reflection (stealth) devices.

In a study published in the Proceedings of the National Academy of Sciences (PNAS), Omenetto, Guidetti and collaborators report on the unique atomic and mineral structures that built up from the glass’ original silicate and mineral constituents, modulated by the pH of the surrounding environment, and the fluctuating levels of groundwater in the soil.

See also  Permselectivity reveals a cool side of nanopores

The project started by chance during a visit to the Italian Institute of Technology’s (IIT) Center for Cultural Heritage Technology. “This beautiful sparkling piece of glass on the shelf attracted our attention,” said Omenetto. “It was a fragment of Roman glass recovered near the ancient city of Aquileia Italy.” Arianna Traviglia, director of the Center, said her team referred to it affectionately as the “wow glass.” They decided to take a closer look.

The researchers soon realized that what they were looking at was nanofabrication of photonic crystals by nature. “It’s really remarkable that you have glass that is sitting in the mud for two millennia and you end up with something that is a textbook example of a nanophotonic component,” said Omenetto.

Corrosion and reconstruction

Chemical analysis from the IIT team dated the glass fragment to between the 1st century BCE and the 1st century CE, with origins from the sands of Egypt—an indication of global trade at the time. The bulk of the fragment preserved its original dark green color, but on its surface was a millimeter-thick patina that had an almost perfect mirror-like gold reflection.

Omenetto and Guidetti used a new kind of scanning electron microscope that not only reveals the structure of the material, but also provides an elemental analysis. “Basically it’s an instrument that can tell you with high resolution what the material is made of and how the elements are put together,” said Guidetti.

They could see that the patina possessed a hierarchical structure made up of highly regular, micrometer-thick silica layers of alternating high and low density which resembled reflectors known as Bragg stacks. Each Bragg stack strongly reflected different, relatively narrow wavelengths of light. The vertical stacking of tens of Bragg stacks resulted in the golden mirror appearance of the patina.

See also  Scientists merge two 'impossible' materials into new artificial structure

How did this structure form over time? The researchers suggest a possible mechanism that played out patiently over centuries. “This is likely a process of corrosion and reconstruction,” said Guidetti.

“The surrounding clay and rain determined the diffusion of minerals and a cyclical corrosion of the silica in the glass. At the same time, assembly of 100 nanometer-thick layers combining the silica and minerals also occurred in cycles. The result is an incredibly ordered arrangement of hundreds of layers of crystalline material.”

“While the age of the glass may be part of its charm, in this case if we could significantly accelerate the process in the laboratory we might find a way to grow optic materials rather than manufacture them,” Omenetto added.

The molecular process of decay and reconstruction has some parallels to the city of Rome itself. The ancient Romans had a penchant for creating long-lasting structures like aqueducts, roads, amphitheaters, and temples. Many of these structures became the foundation of the city’s topography.

Over the centuries since, the city has grown in layers, with buildings rising and falling with the changes brought on by wars, social upheavals and the passage of time. In medieval times, people used materials from broken and abandoned ancient buildings for new construction. In modern times, streets and buildings are often built directly on top of ancient foundations.

“The crystals grown on the surface of the glass are also a reflection of the changes in conditions that occurred in the ground as the city evolved—a record of its environmental history,” said Guidetti.

See also  Scientists have found a way to 'tattoo' tardigrades

Provided by
Tufts University



Source link

Ancient buried Crystals discover glass nanofabrication Photonic Roman Scientists
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Comments are closed.

Top Articles
News

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

News

Deep learning system detects disease-related nanoparticles

News

Unique molecule may lead to smaller, more efficient computers

Editors Picks

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Nanodevices can produce energy from evaporating tap or seawater

March 16, 2024

How to Assess Nanotoxicity: Key Methods and Protocols

January 31, 2025

Ultrasound beam triggers ‘nanodroplets’ to deliver drugs at exactly the right spot

June 28, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel