Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»Medical»Scientists develop breakthrough technology for detecting protein modifications
Medical

Scientists develop breakthrough technology for detecting protein modifications

August 15, 2023No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Scientists develop breakthrough technology for detecting protein modifications
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

A team of scientists led by the University of Oxford have achieved a significant breakthrough in detecting modifications on protein structures. The method, published in Nature Nanotechnology, employs innovative nanopore technology to identify structural variations at the single-molecule level, even deep within long protein chains.

Human cells contain approximately 20,000 protein-encoding genes. However, the actual number of proteins observed in cells is far greater, with over 1,000,000 different structures known. These variants are generated through a process known as post-translational modification (PTM), which occurs after a protein has been transcribed from DNA. PTM introduces structural changes such as the addition of chemical groups or carbohydrate chains to the individual amino acids that make up proteins. This results in hundreds of possible variations for the same protein chain.

These variants play pivotal roles in biology, by enabling precise regulation of complex biological processes within individual cells. Mapping this variation would uncover a wealth of valuable information that could revolutionize our understanding of cellular functions. But to date, the ability to produce comprehensive protein inventories has remained an elusive goal.

To overcome this, a team led by researchers at the University of Oxford’s Department of Chemistry has successfully developed a method for protein analysis based on nanopore DNA/RNA sequencing technology. In this approach, a directional flow of water captures and unfolds 3D proteins into linear chains that are fed through tiny pores, just wide enough for a single amino acid molecule to pass through. Structural variations are identified by measuring changes in an electrical current applied across the nanopore. Different molecules cause different disruptions in the current, giving them a unique signature.

See also  Modular nanoparticles developed for targeted drug delivery and neutralizing biological agents

The team successfully demonstrated the method’s effectiveness in detecting three different PTM modifications (phosphorylation, glutathionylation, and glycosylation) at the single-molecule level for protein chains over 1,200 residues long. These included modifications deep within the protein’s sequence. Importantly, the method does not require the use of labels, enzymes or additional reagents.

According to the research team, the new protein characterization method could be readily integrated into existing portable nanopore sequencing devices to enable researchers to rapidly build protein inventories of single cells and tissues. This could facilitate point-of-care diagnostics, enabling the personalized detection of specific protein variants associated with diseases including cancer and neurodegenerative disorders.

Professor Yujia Qing (Department of Chemistry, University of Oxford), contributing author for the study, said: ‘This simple yet powerful method opens up numerous possibilities. Initially, it allows for the examination of individual proteins, such as those involved in specific diseases. In the longer term, the method holds the potential to create extended inventories of protein variants within cells, unlocking deeper insights into cellular processes and disease mechanisms.’

The ability to pinpoint and identify post-translational modifications and other protein variations at the single-molecule level holds immense promise for advancing our understanding of cellular functions and molecular interactions. It may also open new avenues for personalized medicine, diagnostics, and therapeutic interventions.”

Professor Hagan Bayley, Department of Chemistry, University of Oxford, contributing author and co-founder of Oxford Nanopore Technologies

Oxford Nanopore Technologies, a spinout company launched in 2005 based on Professor Bayley’s research, has become established as a front-runner in next-generation sequencing technologies. Oxford Nanopore’s patented nanopore technology enables scientists to sequence nucleic acids (DNA and RNA) quickly using portable, inexpensive devices – in contrast to standard sequencing, which typically requires dedicated laboratories. Oxford Nanopore devices have revolutionized fundamental and clinical genomics and played a critical role during the COVID-19 pandemic in helping to track the spread of new coronavirus variants.

See also  Scientists achieve rapid upcycling of microplastics to graphene

This work was carried out in collaboration with the research group of mechanobiologist Sergi Garcia-Maynes at King’s College London and the Francis Crick Institute.

Source:

Journal reference:

Martin-Baniandres, P., et al. (2023). Enzyme-less nanopore detection of post-translational modifications within long polypeptides. Nature Nanotechnology. doi.org/10.1038/s41565-023-01462-8.

Source link

Breakthrough detecting develop modifications Protein Scientists technology
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

Modular protein adapter technology enables exosome-based precision drug delivery

May 6, 2025

Scientists have found a way to ‘tattoo’ tardigrades

May 3, 2025

ATLANT 3D’s DALP Technology for Thin-Film Deposition

May 2, 2025

First-ever real-time visualization of nanoscale domain response may boost ultrasound imaging technology

April 30, 2025

Researchers develop full-color-emitting upconversion nanoparticle technology for ultra-high RGB display quality

April 20, 2025

Comments are closed.

Top Articles
Research

How Governments are Fueling Nanotech Innovations

News

Hyperspectral microscopy reveals the nanostructures that give butterflies their colors

News

Enhancing Hydrogen Production with Nanoneedles

Editors Picks

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Fluid-like electrons are unlocking new tech possibilities

October 30, 2024

Scientists develop high-impact materials for optoelectronic technologies

January 20, 2025

Spraying rice with sunscreen particles during heat waves boosts growth

November 5, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel