Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Scientists create the thinnest lens on Earth, enabled by excitons
News

Scientists create the thinnest lens on Earth, enabled by excitons

June 7, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Scientists create the thinnest lens on Earth, enabled by excitons
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Credit: Nano Letters (2024). DOI: 10.1021/acs.nanolett.4c00694

Lenses are used to bend and focus light. Normal lenses rely on their curved shape to achieve this effect, but physicists from the University of Amsterdam and Stanford University have made a flat lens of only three atoms thick that relies on quantum effects. This type of lens could be used in future augmented reality glasses.

Curved-glass lenses work because light is refracted (bent) when it enters the glass, and again when it exits, making things appear larger or closer than they actually are. People have used curved lenses for more than two millennia to study the movements of distant planets and stars, to reveal tiny microorganisms, and to improve vision.

Ludovico Guarneri, Thomas Bauer, and Jorik van de Groep of the University of Amsterdam, together with colleagues from Stanford University in California, took a different approach. Using a single layer of a unique material called tungsten disulfide (WS2 for short), they constructed a flat lens that is half a millimeter wide, but just 0.0000006 millimeters, or 0.6 nanometers, thick. This makes it the thinnest lens on Earth.

Rather than relying on a curved shape, the lens is made of concentric rings of WS2 with gaps in between. This is called a “Fresnel lens” or “zone plate lens,” and it focuses light using diffraction rather than refraction. The size of, and distance between the rings (compared to the wavelength of the light hitting it) determines the lens’s focal length. The design used here focuses red light 1 mm from the lens.

The work is published in the journal Nano Letters.

See also  Improvement of ultra-broadband photodetection with a device based on twisted double bilayer graphene

Quantum enhancement

A unique feature of this lens is that its focusing efficiency relies on quantum effects within WS2. These effects allow the material to efficiently absorb and re-emit light at specific wavelengths, giving the lens the built-in ability to work better for these wavelengths.

This quantum enhancement works as follows. First, WS2 absorbs light by sending an electron to a higher energy level. Due to the ultra-thin structure of the material, the negatively charged electron and the positively charged “hole” it leaves behind in the atomic lattice stay bound together by the electrostatic attraction between them, forming what is known as an “exciton.”

These excitons quickly disappear again by the electron and hole merging together and sending out light. This re-emitted light contributes to the lens’s efficiency.

The scientists detected a clear peak in lens efficiency for the specific wavelengths of light sent out by the excitons. While the effect is already observed at room temperature, the lenses are even more efficient when cooled down. This is because excitons do their work better at lower temperatures.

Augmented reality

Another one of the lens’s unique features is that, while some of the light passing through it makes a bright focal point, most light passes through unaffected. While this may sound like a disadvantage, it actually opens new doors for use in technology of the future.

“The lens can be used in applications where the view through the lens should not be disturbed, but a small part of the light can be tapped to collect information. This makes it perfect for wearable glasses such as for augmented reality,” explains Jorik van de Groep, one of the authors of the paper.

See also  Scientists Reveal That Water Can “Talk” to Electrons in Graphene

The researchers are now setting their sights on designing and testing more complex and multifunctional optical coatings whose function (such as focusing light) can be adjusted electrically.

“Excitons are very sensitive to the charge density in the material, and therefore we can change the refractive index of the material by applying a voltage,” says Van de Groep.

Provided by
University of Amsterdam



Source link

create Earth enabled excitons lens Scientists thinnest
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Harnessing the Strengths of Electrical AFM Modes for Nanoscale Investigation

Research

Revolutionizing Cancer Treatment with Johns Hopkins’ Latest Immunotherapy Breakthrough

News

Making robotic surgery safer and more precise with a human touch

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Innovative Device Harvests Vibrational Energy

August 9, 2023

New nano-thin superbug-slaying material could revolutionize wound healing

September 14, 2023

Team pioneers a ‘one-pot platform’ to promptly produce mRNA delivery particles

July 18, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel