Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Paper sensors and smartphone app monitor personal smoke exposure

May 15, 2025

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Researchers realize multi-heterojunctioned plastics with high thermoelectric figure of merit
News

Researchers realize multi-heterojunctioned plastics with high thermoelectric figure of merit

August 6, 2024No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Researchers realize multi-heterojunctioned plastics with high thermoelectric figure of merit
Concept and TOF-SIMS image of the PMHJ structure. Credit: Nature (2024). DOI: 10.1038/s41586-024-07724-2

Organic thermoelectric materials hold great promise as flexible energy sources for the Internet of Things and wearable electronics. However, their relatively low dimensionless figure of merit (ZT) compared to traditional materials has been a major obstacle, limiting their use in thermoelectric power generation and solid-state cooling.

Prof. Di Chong’an from the Institute of Chemistry of the Chinese Academy of Sciences and Prof. Zhao Lidong from Beihang University, along with their collaborators, have introduced a polymeric multi-heterojunction (PMHJ) structure that achieved a ZT exceeding 1.0. The study was published in Nature.

Ideal thermoelectric materials should conform to the “phonon-glass electron-crystal” model. Currently, enhancing the power factor is the primary focus in developing high-performance organic thermoelectric materials. Despite efforts to improve thermoelectric efficiency by assessing thermal conductivity, the lack of effective strategies for phonon scattering in soft material systems has impeded significant progress in achieving a leap in the ZT value over the past decade.

In this study, the researchers proposed the PMHJ structure to manipulate thermal conductivity in organic systems. This novel design features a periodically arranged nanostructure, with each polymer layer measuring less than 10 nm thick. The adjacent interface layers are approximately two molecular layers thick and exhibit bulk heterojunction properties.

By precisely controlling the polymer layer thickness and interfacial structural characteristics, the researchers studied the size effect and diffuse scattering of phonon/phonon-like thermal vibrations within the PMHJ structure.

They discovered that as the layer thickness approached the phonon mean free path along the conjugated backbone direction, interface scattering intensified, leading to a significant reduction in the film’s lattice thermal conductivity by more than 70% to 0.1 W m-1 K-1. Furthermore, they discovered that the doped (6,4,4) film demonstrated excellent electrical transport properties, with a high power factor of 628 μW m-1 K-2 and a maximum ZT of 1.28, far surpassing current organic thermoelectric materials.

See also  Scientists develop ultrafast hydrogen leak detection

Besides these achievements, PMHJ films are compatible with large-area solution processing technology. The thermoelectric integrated devices exhibited an impressive normalized power density of 1.12 μW cm-2 K-2, highlighting their potential for use in flexible power supply components.

This study underscores the importance of nanostructure engineering in overcoming the limitation of weakly interacting plastics due to low ZT. It offers a new way of making advancements in plastic-based thermoelectric materials.

Provided by
Chinese Academy of Sciences



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Paper sensors and smartphone app monitor personal smoke exposure

May 15, 2025

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025

Breathable algae offers a new path

May 13, 2025

A Solution for Soil and Crop Improvement

May 12, 2025

Comments are closed.

Top Articles
News

2D layer of phosphorus pentamers shows semiconductor properties on silver surface

The potentialities of 2D magnets for thermoelectric applications

News

Permselectivity reveals a cool side of nanopores

Editors Picks

Paper sensors and smartphone app monitor personal smoke exposure

May 15, 2025

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Scientists develop 3D-printed epifluidic electronic skin

October 10, 2023

Collaborative review unveils the potential of graphene in advancing nitride semiconductor technology

January 6, 2024

Applying semiconductor manufacturing principles to optoelectronic devices

December 11, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel