Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Researchers dynamically tune friction in graphene
News

Researchers dynamically tune friction in graphene

October 7, 2023No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Researchers dynamically tune friction in graphene
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Fabrication and characterization of graphene FET devices used for tunable friction measurements. Credit: Nature Communications (2023). DOI: 10.1038/s41467-023-41375-7

The friction on a graphene surface can be dynamically tuned using external electric fields, according to researchers at the University of Illinois Urbana-Champaign led by Professor Rosa Espinosa-Marzal of the Department of Civil and Environmental Engineering. The work is detailed in the paper, “Dynamically tuning friction at the graphene interface using the field effect,” published September 19, 2023, in the journal Nature Communications.

Friction plays a key role in both natural and engineered systems, dictating the behavior of sliding contacts, affecting the wear of materials and influencing the flow of fluids across surfaces, among other effects. Friction can be controlled passively through the selection of design components, for example material and roughness.

A more recent trend, however, has been to investigate systems whose frictional response can be dynamically tuned in situ, especially as micro- and nanoscale devices become more common. One of the more promising avenues to achieve friction control is with external electric fields that can modulate the properties of lubricants and material surfaces as well as the interactions between them.

“Novel approaches to the design of interacting surfaces are necessary to move past the state of the art,” write the researchers, “and 2D materials are a new and excellent choice based on their high mechanical strength and chemical and thermal stability.”

Graphene is the 2D form of carbon and is sometimes hailed as a “wonder material” because of its unique and superlative properties. Surfaces coated in graphene films generally exhibit very low friction, but the new results demonstrate that friction on graphene-coated surfaces can be “turned on” by exposing the surface to an electric field under the proper conditions. The system can then be controlled in this higher friction state before being switched back to lower friction, all without applying large electrical biases between the surfaces in contact.

See also  Sub-wavelength confinement of light demonstrated in indium phosphide nanocavity

“The work will be impactful in reducing energy consumption in nano- and micro-electromechanical systems, in addition to allowing dynamic control of friction while mitigating the enhanced wear and corrosion of sliding surfaces when direct bias is applied,” Espinosa-Marzal said.

Provided by
University of Illinois Grainger College of Engineering



Source link

dynamically friction Graphene Researchers tune
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Comments are closed.

Top Articles
Research

The Promise and Potential of Nanotechnology Investments

Medical

Breakthrough nanopipette enables real-time observation of cancer cell reactions to treatment

News

Sustainable nanofiber coating can extend fruit shelf life

Editors Picks

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Experimental nanomedicine delivers chemo drugs directly to tumors in mice

September 19, 2024

Scientists merge two ‘impossible’ materials into new artificial structure

April 11, 2025

Researchers create orientation-independent magnetic field-sensing nanotube spin qubits

October 12, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel