Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Paper sensors and smartphone app monitor personal smoke exposure

May 15, 2025

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Researchers discover tunable 2D electron gas at heterointerface of 5d iridates
News

Researchers discover tunable 2D electron gas at heterointerface of 5d iridates

October 23, 2024No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Researchers discover tunable 2D electron gas at heterointerface of 5d iridates
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

by Li Miao and Zhao Weiwei, Hefei Institutes of Physical Science, Chinese Academy of Sciences

Schematic illustration of band alignment in different SrIrO3-based superlattices. Credit: Yang Xiaoping

Recently, Professor Yang Xiaoping’s research group at the High Magnetic Field Laboratory, the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, discovered a tunable and controllable monoatomic layer two-dimensional electron gas (2DEG) localized at the heterointerface.

The research results were published in ACS Applied Electronic Materials.

The Mott insulator-metal transition is a key topic in condensed matter physics due to its potential for device applications and superconductivity when doped. In 5d iridates, the spin-orbit coupling (SOC) is much stronger than in 3d transition metal oxides, making it comparable to crystal field splitting and electron-electron interactions. This results in the Ir 5d-t2g bands splitting into Jeff = 3/2 and Jeff = 1/2 subbands.

Currently, artificial heterointerfaces techniques are widely employed to manipulate the electronic structure and properties of materials.

In this study, researchers explored the electronic properties of (SrIrO3)m/(LaTiO3)1 superlattices using density functional theory. They observed that an integer charge transfer occurs between LaTiO3 and SrIrO3, driven by the combined effects of interfacial polarity differences and oxygen octahedral distortions.

The number of transferred electrons on each Ir atom can be controlled by doping the A-site of LaTiO3 or varying the SrIrO3 layer number m, thereby modulating the oxidation states of Ir. This led to a variety of electronic states, including nonmagnetic band insulators, ferromagnetic metals, ferrimagnetic Mott insulators, and ferrimagnetic metals.

A mixed valence state emerges when there are at least two layers of SrIrO3. This leads to an insulator-metal transition when the SrIrO3 layer number m is greater than or equal to 3.

See also  High-sensitivity terahertz detection by 2D plasmons in transistors

The most interesting thing is that the charge transfer and the formation of a two-dimensional electron gas (2DEG) only occur at the single atomic layer of IrO2 where the materials meet, regardless of the SrIrO3 layer thickness. This is different from the 3d LaAlO3/SrTiO3 system, where the 2DEG extends deeper into the material beyond just the interface.

These findings provide fresh insights into the development of novel nanoscale oxide electronic devices and the exploration of two-dimensional unconventional iridate superconductivity.

Provided by
Hefei Institutes of Physical Science, Chinese Academy of Sciences


Source link

discover electron gas heterointerface iridates Researchers Tunable
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Paper sensors and smartphone app monitor personal smoke exposure

May 15, 2025

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025

Breathable algae offers a new path

May 13, 2025

A Solution for Soil and Crop Improvement

May 12, 2025

Comments are closed.

Top Articles
News

Project Pursues Ultra Low-Cost, Perovskite Solar Cells

News

Ultra-stable Ag₃₀ nanoclusters with metallic aromaticity show promise for optoelectronic devices

News

How Phononic Crystals are Shaping Quantum Computing

Editors Picks

Paper sensors and smartphone app monitor personal smoke exposure

May 15, 2025

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Image-guided cancer treatment using biocompatible copper-based nanomaterials

August 6, 2024

What are the Differences between High-Pressure Homogenization and Sonication?

January 9, 2024

Empowering optical tweezers with ‘biometric eyes’

December 2, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel