Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Spontaneous symmetry breaking in electron systems proves elusive

June 3, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Researchers discover tightest arrangement of bilayer alkali metals between graphene layers
News

Researchers discover tightest arrangement of bilayer alkali metals between graphene layers

March 26, 2024No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Researchers discover tightest arrangement of bilayer alkali metals between graphene layers
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Scanning transmission electron microscopy (STEM) image and atomic structure of Cs bilayer in bilayer graphene (BLG) (C6Cs2C6). Credit: Nature Communications (2024). DOI: 10.1038/s41467-023-44602-3

Researchers at AIST, in collaboration with Osaka University, Tokyo Polytechnic University, Kyushu University, and National Tsing Hua University, have developed a technique to insert alkali metals into the interlayers of graphene, which is a single layer of carbon atoms arranged in a hexagonal lattice. They have succeeded in directly observing the atomic arrangement of the inserted alkali metal atoms which is a hexagonal close packed bilayer structure.

The study is published in the journal Nature Communications.

The performance of rechargeable batteries is a key factor influencing the driving distance of electric vehicles and the usage time of smartphones. Improving the performance of these electronic devices is possible if rechargeable batteries can accumulate greater electrical capacities.

Graphite, the electrode material used in batteries, is composed of multilayers of graphene, with alkali metals placed between the layers to facilitate the flow of electrons during charging and discharging. Achieving a high density of alkali metals storage between graphene layers could increase the electric capacity.

For the past hundred years, it has been widely recognized through X-ray and electron diffraction measurements that graphene interlayers can only accommodate a single layer of alkali metal. Each layer being fully filled by single layer alkali metal atoms is considered the theoretical charging limit.

However, there have been no reports of studies directly observing the atomic arrangement of interlayer alkali metals and verifying whether graphene layers can only accommodate a single layer of alkali metal atoms or whether other techniques can achieve higher density or multiple layers of alkali metals.

The research team developed a technique to insert dense alkali metals between graphene layers. Utilizing a high-performance low-voltage (60 kV) electron microscope, they have successfully observed the arrangement structure of alkali metal atoms between the graphene layers. The alkali metals are found densely packed in a two-layer structure in both bilayer graphene and in the surface layer graphite due to the flexible extension ability of their interlayer spacing.

See also  From soot particle filters to renewable fuels: Examining carbon nanoparticle oxidation

This allows approximately twice as many alkali metals to be inserted. If graphene with two layers of alkali metal insertion can be stacked, it is expected to serve as an electrode material enhancing the capacity of alkaline ion secondary batteries.

Provided by
Advanced Industrial Science and Technology



Source link

alkali arrangement bilayer discover Graphene layers metals Researchers tightest
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Spontaneous symmetry breaking in electron systems proves elusive

June 3, 2025

Improving Crop Tolerance to Drought and Heat Using Nanomaterials

June 3, 2025

Crystal-modifying agent piracetam provides scalable strategy for high-efficiency all-perovskite tandem solar cells

June 3, 2025

Phonon decoupling in naturally occurring mineral enables subatomic ferroelectric memory

June 2, 2025

Comments are closed.

Top Articles
News

Wearable aptamer nanobiosensor wirelessly monitors estrogen in sweat

News

Researchers develop proton barrier films using pore-free graphene oxide

News

A simple, scalable method using light to 3D print helical nanostructures

Editors Picks

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Spontaneous symmetry breaking in electron systems proves elusive

June 3, 2025

Improving Crop Tolerance to Drought and Heat Using Nanomaterials

June 3, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Unlocking Chemical Secrets: Applications of Raman Spectroscopy

August 18, 2024

New method of generating multiple, tunable nanopores

October 13, 2024

Graphene Hydroxide: Properties and Applications

December 21, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel