Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

New tool unlocks the body’s ‘messages in a bottle’ to detect and treat disease

May 16, 2025

Synthetic nanoparticle eyedrops help corneas heal after chemical or inflammatory damage

May 16, 2025

Micropipette uses targeted ion delivery to activate individual neurons

May 15, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Researchers develop tiny droplets that harness laser light to detect disease markers
News

Researchers develop tiny droplets that harness laser light to detect disease markers

May 5, 2024No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Researchers develop tiny droplets that harness laser light to detect disease markers
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Fluorescence microscopy photo of the laser-activated microdroplets developed by NTU Singapore-led researchers. Credit: NTU Singapore

A team of researchers led by Nanyang Technological University, Singapore (NTU Singapore) has created tiny droplets that, when activated by laser light, can detect viral protein biomarkers indicating the presence of certain diseases.

These microdroplets, about one-third the diameter of a strand of human hair, could potentially travel in the bloodstream to reach all parts of the human body and detect particles shed by cells, known as exosomes, which function as disease biomarkers.

Nanyang Assistant Professor Chen Yu-Cheng from NTU’s School of Electrical and Electronic Engineering, who led the research team with research fellow Dr. Fang Guocheng, said the microdroplets could also offer a more precise, effective alternative for photodynamic therapy, which uses light-activated drug carriers to kill abnormal cells.

The research team’s work was reported in the journal Nano Letters in March 2023.

Disease detection by hunting for unhealthy cells

The research team used a liquid crystal to create microdroplets which were then coated with various antibodies that react to different proteins shed by viruses, turning them into disease detectors.

The microdroplet serves as a focal point for laser light. When the laser enters the droplet, its energy and light are amplified as the laser reflects and bounces inside the droplet repeatedly before exiting the droplet. This creates a stronger energy signal that is emitted from the droplet, leading to more accurate, precise and easily detectable signals.

When a microdroplet encounters a protein that reacts with one of its attached antibodies—suggesting the presence of disease or infection—the wavelength of the light reflected out of the microdroplet changes.

See also  Flinders Researchers Achieve Chemical-Free Gold Nanoparticle Production

By measuring the wavelength shift as it leaves the microdroplet, researchers have used the technology in lab trials to successfully detect neurological disorders, genetic diseases and cancerous cells.

Asst Prof Chen said, “Using lasers allows us to amplify subtle biological changes, as they perform well even in scattered or deep tissue environments. Lasers offer strong coherence and intensity and a high signal-to-noise ratio, all of which lead to more precise detection.”

Researchers develop tiny droplets that harness laser light to detect disease markers
Research fellow Dr Fang Guocheng from NTU Singapore’s School of Electrical and Electronic Engineering with a vial of laser-activated microdroplets (pink), which are coated with various antibodies that react to different proteins shed by viruses. This turns them into disease detectors. Credit: NTU Singapore

The researchers said the microdroplets have potential applications in drug screening. “We envision the proposed study can serve as a useful tool for both fundamental biological science and applications such as drug screening and organ or tissue-on-chip applications,” said Asst Prof Chen.

Currently, tests for diseased cells are done with conventional fluorescent light. Using a laser confers several advantages, said the researchers. The biggest one is greater precision in detecting diseases.

“As the wavelength of a laser-reflected beam occupies a narrower band than the fluorescence used in conventional tests, the results are clearer and more precise, with less noise and uncertainty,” said Dr. Fang, a Presidential Postdoctoral Fellow at NTU’s School of Electrical and Electronic Engineering and the paper’s co-corresponding author.

“Due to their high sensitivity to changes in the surrounding environment, laser particles have been employed as molecular sensors in various applications,” said Asst Prof Chen.

These customizable microdroplets also offer flexibility in motion and detection. According to earlier published research, they can be manually controlled using magnetic particles or move autonomously using lipids and surfactants, allowing them to spread within a body. They are also biodegradable and can be safely absorbed by the body.

See also  3D-printed nanopillars mimic brain environment to promote neuron growth

“The ability to manipulate microlasers—lasers a few microns in size—in biological fluids opens new possibilities in biophotonic applications,” said Asst Prof Chen.

Researchers develop tiny droplets that harness laser light to detect disease markers
Nanyang Assistant Professor Chen Yu-Cheng (left) and research fellow Dr Fang Guocheng from NTU Singapore’s School of Electrical and Electronic Engineering are part of the research team that developed tiny, laser-activated droplets that could be used to detect biomarkers for diseases and cancerous cells (shown on screen as large red and blue spheres) more accurately. Credit: NTU Singapore

Alternative uses in photodynamic therapy

The microdroplets could be applied in photodynamic therapy, where patients receive a light-activated drug. These drugs, called photosensitizers, are designed to be absorbed only by diseased or abnormal cells and only take effect when activated by a light source.

The team’s microdroplets are small enough to navigate the bloodstream and also bind to exosomes. They could be used to deliver these photosensitizers to areas where diseased cells shed exosomes.

Conventional photodynamic therapy uses an external fluorescent light to activate drug carriers in the bloodstream, which shine light over a large surface area of the body. Doctors can activate the drugs more precisely and locally by using a laser as the light source instead, leading to better targeted efficiency.

The research team is currently working to develop an integrated biochip which can potentially be commercialized for use in drug screening and bio-assays on a single chip.

Provided by
Nanyang Technological University



Source link

detect develop Disease droplets harness Laser light markers Researchers Tiny
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

New tool unlocks the body’s ‘messages in a bottle’ to detect and treat disease

May 16, 2025

Synthetic nanoparticle eyedrops help corneas heal after chemical or inflammatory damage

May 16, 2025

Micropipette uses targeted ion delivery to activate individual neurons

May 15, 2025

Paper sensors and smartphone app monitor personal smoke exposure

May 15, 2025

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

Comments are closed.

Top Articles
News

DNA-tagged gold nanoparticles could enable personalized cancer treatment

News

New method transforms carbon nanoparticles from emissions into renewable energy catalysts

News

Scientists achieve femtosecond laser fabrication of magnetic-responsive Janus origami robots

Editors Picks

New tool unlocks the body’s ‘messages in a bottle’ to detect and treat disease

May 16, 2025

Synthetic nanoparticle eyedrops help corneas heal after chemical or inflammatory damage

May 16, 2025

Micropipette uses targeted ion delivery to activate individual neurons

May 15, 2025

Paper sensors and smartphone app monitor personal smoke exposure

May 15, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Nano-sized particles trigger tumor cell self-destruction

January 24, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Anticipating Nanotechnology’s Future: Projections for Funding and Emerging Trends

October 23, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel