Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Researchers develop novel covalent organic frameworks for precise cancer treatment delivery
News

Researchers develop novel covalent organic frameworks for precise cancer treatment delivery

September 25, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Researchers develop novel covalent organic frameworks for precise cancer treatment delivery
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Credit: ACS Applied Materials & Interfaces (2024). DOI: 10.1021/acsami.4c10812

A team of researchers at NYU Abu Dhabi (NYUAD), led by Program Head of Chemistry Ali Trabolsi, have developed nanoscale covalent organic frameworks (nCOFs), crystalline organic polymers that have been modified with peptides to treat the most aggressive form of breast cancer, known as triple-negative breast cancer (TNBC).

The peptides enable the COFs to release drug cargo within the acidic environment of the tumor, ensuring that high concentrations of the drug are delivered directly to the tumor site. This increases the effectiveness of the treatment while minimizing the impact on healthy tissues.

This novel treatment delivery method offers hope for a new approach for treating triple-negative breast cancer, which tends to grow and spread faster than other forms of breast cancer. It has fewer treatment options and typically has a worse prognosis.

While peptides have previously been used for targeted delivery, their conjugation with COFs represents an innovative approach in this field. In the paper titled “cRGD-Peptide Modified Covalent Organic Frameworks for Precision Chemotherapy in Triple-Negative Breast Cancer” published in the journal ACS Applied Materials & Interfaces, the researchers describe the process of designing alkyne-functionalized nCOFs that have been chemically modified with cyclic RGD peptides (Alkyn-nCOF-cRGD).

This configuration was designed to specifically target αvβ3 integrins, which are overexpressed in TNBC cells. The nCOFs are biocompatible and were engineered to selectively disintegrate under acidic conditions, allowing for the precise and localized release of Doxorubicin, a chemotherapeutic agent that has been encapsulated in the nCOFs.

Farah Benyettou, a key researcher on the team, said, “Our innovative approach using peptide-conjugated COFs offers a highly targeted treatment method for triple-negative breast cancer. By focusing on the acidic environment of tumors, we can deliver chemotherapy precisely where it is needed most, reducing side effects and improving patient outcomes. The peptides act like a key to open the door of cancer cells, allowing the drug to enter and exert its effects exactly where it is needed.”

See also  Scientists develop breakthrough technology for detecting protein modifications

This research is particularly significant in the UAE, where breast cancer rates are notably high. Existing drug delivery systems often have significant drawbacks, such as non-specific distribution, fluctuations in drug plasma levels, rapid clearance, and side effects on healthy tissue. The successful in vitro and in vivo results of this study not only highlight the advanced targeting capabilities of the nCOFs but also set new standards for personalized cancer therapy.

“Our research has created a smarter way to fight the most aggressive and invasive form of breast cancer,” said Trabolsi.

“By providing a targeted approach to cancer therapy, this technology not only fills existing gaps in drug delivery research but also represents a crucial step towards personalized medicine in cancer treatment that is both more effective and less harmful to patients,” said Benyettou.

Provided by
New York University



Source link

cancer covalent delivery develop Frameworks Organic Precise Researchers Treatment
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Modular protein adapter technology enables exosome-based precision drug delivery

May 6, 2025

Comments are closed.

Top Articles

In vivo production of CAR-T cells using virus-mimetic fusogenic nanovesicles

Study investigates enhancing superconductivity of graphene-calcium superconductors

News

XY-Theta Multi-Axis Positioning Stages

Editors Picks

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Lipid Nanoparticles vs Liposomes: Key Differences Explained

January 20, 2025

Investigation into the regime between the nano- and microscale could pave the way for nanoscale technologies

August 12, 2024

Atomic Layer Deposition vs Chemical Vapor Deposition

June 14, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel