Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Nanoparticle-cell interface enables electromagnetic wireless programming of mammalian transgene expression

May 28, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Researchers develop high-performance heterojunction pn diodes
News

Researchers develop high-performance heterojunction pn diodes

January 5, 2025No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Researchers develop high-performance heterojunction pn diodes
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Credit: Nano Letters (2024). DOI: 10.1021/acs.nanolett.4c05446

A research team has developed high-performance diamond/ε-Ga2O3 heterojunction pn diodes based on ultrawide bandgap semiconductors, achieving breakdown voltages exceeding 3 kV. This work was published in Nano Letters.

The research was led by Prof. Ye Jichun from the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS), together with researchers from Zhengzhou University, Nanjing University, Harbin Institute of Technology, and Yongjiang Laboratory.

Ultrawide bandgap semiconductors including Ga2O3 and diamond demonstrate notable potential for high-power applications due to their ultrawide bandgap, high breakdown field, radiation resistance, and carrier mobility. Bipolar devices, such as pn diodes and bipolar junction transistors, hold promising potential in the high-power electronics industry due to their ability to withstand reverse voltage currents.

However, effective bipolar doping in ultrawide bandgap semiconductors is limited by the substantial ionization energies of dopants. To overcome this bottleneck, the researchers have proposed a heterojunction strategy. This approach integrates p-type diamond with n-type ε-Ga2O3 for fabricating power pn diodes.

The heteroepitaxial n-type ε-Ga2O3 film was grown on the p-type diamond single-crystal substrate by coordinating multi-domains and confining the crystallization pathway. This process alleviates lattice mismatch. The heterojunction interface between ε-Ga2O3 and diamond is atomically sharp without observable interfacial element diffusion, enabling highly efficient rectification and low reverse leakage current in the heterojunction diodes.

Compared with previously reported diamond-based diodes, the fabricated diamond/ε-Ga2O3 heterojunction diode exhibits notable rectifying characteristics, with an on−off ratio exceeding 108. It achieves a maximum breakdown voltage surpassing 3,000 V, even without edge termination.

Additionally, a thermal boundary conductance of up to 64 MW/m2·K at 500 K was achieved, demonstrating the thermal management capability of the diamond/ε-Ga2O3 heterojunction diode.

See also  Researchers assemble patterns of micro- and nanoparticles without using solvents

This study introduces an innovative methodology for fabricating high-performance ultrawide bandgap semiconductor-based bipolar devices. The resulting devices demonstrate exceptional breakdown voltages and efficient thermal management, making them highly suitable for ultra-high-power applications.

Provided by
Chinese Academy of Sciences



Source link

develop diodes heterojunction Highperformance Researchers
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Nanoparticle-cell interface enables electromagnetic wireless programming of mammalian transgene expression

May 28, 2025

Finely-tuned TiO₂ nanorod arrays enhance solar cell efficiency

May 28, 2025

Different DLS-Based Systems Can Give Us Different Size Results

May 27, 2025

2D Janus heterobilayers lead the way

May 27, 2025

Comments are closed.

Top Articles
News

Revolutionary nanodrones enable targeted cancer treatment

News

Drug-loaded hydrogel microelectrode arrays significantly boost brain-computer interface performance, study finds

News

First comprehensive characterization of the extraordinary thermoelectric properties of cadmium arsenide thin films

Editors Picks

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Nanoparticle-cell interface enables electromagnetic wireless programming of mammalian transgene expression

May 28, 2025

Finely-tuned TiO₂ nanorod arrays enhance solar cell efficiency

May 28, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Scientists Discover Unusual Ultrafast Motion in Layered Magnetic Materials

August 18, 2023

Electricity generation on the nanoscale

October 23, 2023

Breakthrough in Mass Production of MXene

September 18, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel