Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Researchers demonstrate a high-speed electrical readout method for graphene nanodevices
News

Researchers demonstrate a high-speed electrical readout method for graphene nanodevices

October 31, 2023No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Researchers demonstrate a high-speed electrical readout method for graphene nanodevices
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
(a) The layer structure of the fabricated device. (b) The resonant circuit used for rf-reflectometry. Credit: Tomoya Johmen et al.

Graphene is well-known for its high electrical conductivity, mechanical strength, and flexibility. Stacking two layers of graphene with atomic layer thickness produces bilayer graphene, which possesses excellent electrical, mechanical, and optical properties. As such, bilayer graphene has attracted significant attention and is being utilized in a host of next-generation devices, including quantum computers.

But a complication to their application in quantum computing comes in the form of gaining accurate measurements of the quantum bit states. Most research has primarily used low-frequency electronics to overcome this. However, for applications that demand faster electronic measurements and insights into the rapid dynamics of electronic states, the need for quicker and more sensitive measurement tools has become evident.

Now, a group of researchers from Tohoku University have outlined improvements to radio-frequency (rf) reflectometry to achieve a high-speed readout technique. Remarkably, the breakthrough involves the use of graphene itself. The details of their study were reported in the journal Physical Review Applied.

Rf reflectometry works by sending radio frequency signals into a transmission line and then measuring the reflected signals to obtain information about samples. But in devices employing bilayer graphene, the presence of significant stray capacitance in the measurement circuit leads to rf leakage and less-than-optimal resonator properties. While various techniques have been explored to mitigate this, clear device design guidelines are still awaited.

  • Researchers demonstrate a high-speed electrical readout method for graphene nanodevices
    The dependence of rf reflection characteristics on gate voltage, showing the change in conductance. Credit: Tomoya Johmen et al.
  • Researchers demonstrate a high-speed electrical readout method for graphene nanodevices
    Coulomb diamonds originating from the formation of quantum dots are observed by monitoring the reflected voltage from the resonator. Credit: Tomoya Johmen et al.

“To circumvent this common shortfall of rf reflectometry in bilayer graphene, we employed a microscale graphite back-gate and an undoped silicon substrate,” says Tomohiro Otsuka, corresponding author of the paper and associate professor at Tohoku University’s Advanced Institute for Materials Research (WPI-AIMR).

See also  New method realize ohmic contacts in n-type MoSâ‚‚ transistors at cryogenic temperatures

“We successfully realized good rf matching conditions, calculated the readout accuracy numerically, and compared these measurements with direct current measurements to confirm its consistency. This allowed us to observe Coulomb diamonds through rf reflectometry, a phenomenon indicating the formation of quantum dots in the conduction channel, driven by potential fluctuations caused by bubbles.”

Otsuka and his team’s proposed improvements to rf reflectometry provide important contributions to the development of next-generation devices such as quantum computers, and the exploration of physical properties using two-dimensional materials, such as graphene.

Provided by
Tohoku University



Source link

Demonstrate Electrical Graphene highspeed method NanoDevices readout Researchers
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Comments are closed.

Top Articles
News

Scientists study the behaviors of chiral skyrmions in chiral flower-like obstacles

News

Cutting-edge imaging technique shines light on how DNA strands stack up

Research

South Korea and America’s Joint Venture in Electrochemistry

Editors Picks

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Researchers develop nanofiber-based drug delivery system for skin cancer

January 30, 2024

Deconstructing America’s CHIPS and Science Act

August 21, 2023

Studying Electrical Properties -and More- with AFM

March 17, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel