Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Researchers create materials with unique combination of stiffness, thermal insulation
News

Researchers create materials with unique combination of stiffness, thermal insulation

June 1, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Researchers create materials with unique combo of stiffness, thermal insulation
Credit: Jun Liu

Researchers have demonstrated the ability to engineer materials that are both stiff and capable of insulating against heat. This combination of properties is extremely unusual and holds promise for a range of applications, such as the development of new thermal insulation coatings for electronic devices.

“Materials that have a high elastic modulus tend to also be highly thermally conductive, and vice versa,” says Jun Liu, co-corresponding author of a paper on the work and an associate professor of mechanical and aerospace engineering at North Carolina State University.

“In other words, if a material is stiff, it does a good job of conducting heat. And if a material is not stiff, then it is usually good at insulating against heat.

“But there are instances where you’d want materials that are stiff, but are also good insulators,” Liu says. “For example, you might want to create thermal insulation coatings to protect electronics from high temperatures. Historically, that’s been a challenge.

“We’ve now discovered a range of materials that are both stiff and excellent thermal insulators. What’s more, we can engineer the materials as needed to control how stiff they are and how thermally conductive they are.”

Specifically, the researchers were working with a subset of the class of materials called two-dimensional hybrid organic-inorganic perovskites (2D HOIP). The paper, “Anomalous correlation between thermal conductivity and elastic modulus in two-dimensional hybrid metal halide perovskites,” is published in the journal ACS Nano.

“These are thin films consisting of alternating organic and inorganic layers in a highly ordered crystalline structure,” says Wei You, co-corresponding author of this paper and professor of chemistry and applied physical sciences at the University of North Carolina at Chapel Hill. “And we can tune the composition of either the inorganic or organic layer.”

See also  Emerging Electron Microscopy Techniques for Quantum Research

“We found that we can control the elastic modulus and thermal conductivity of some 2D HOIPs by replacing some of the carbon-carbon chains in the organic layers with benzene rings,” says Qing Tu, co-corresponding author of this paper and an assistant professor of materials science and engineering at Texas A&M University. “Basically—within this specific subset of layered materials—the more benzene rings we add, the stiffer the material gets, and the better able it is to insulate against heat.”

“While discovering these materials in itself holds tremendous potential for a range of applications, as researchers we are particularly excited because we’ve identified the mechanism that is responsible for these characteristics—namely the critical role that the benzene rings play,” says Liu.

In experiments, the researchers found at least three distinct 2D HOIP materials that became less thermally conductive the stiffer they got.

“This work is exciting because it suggests a new pathway for engineering materials with desirable combinations of properties,” Liu says.

The researchers also discovered another interesting phenomenon with 2D HOIP materials. Specifically, they found that by introducing chirality into the organic layers—i.e., making the carbon chains in those layers asymmetrical—they could effectively maintain the same stiffness and thermal conductivity even when making substantial changes to the composition of the organic layers.

“This raises some interesting questions about whether we might be able to optimize other characteristics of these materials without having to worry about how those changes might influence the material’s stiffness or thermal conductivity,” says Liu.

Provided by
North Carolina State University


See also  AI combined with nanotech can detect oral cancer earlier


Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Comments are closed.

Top Articles
News

The Effect of Heat Treatment on Chitosan Nanocomposites

News

Quantitative Analysis of Epoxy Resin Using NIR Spectroscopy

News

Catching steroid hormones with nanotubes

Editors Picks

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

New contact lenses allow wearers to see in the near-infrared

May 30, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

High-sensitivity terahertz detection by 2D plasmons in transistors

January 5, 2024

Chiro-optical force observed at the nanoscale

October 14, 2023

How Are Graphene Nanoribbons Formed?

May 6, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel