Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Paper sensors and smartphone app monitor personal smoke exposure

May 15, 2025

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Researchers confirm thermal insights for tiny circuits
News

Researchers confirm thermal insights for tiny circuits

November 12, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Researchers confirm thermal insights for tiny circuits
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
The microstructure of as-deposited and annealed Cu films. STEM image of (a–c,) as-deposited ≈27 nm PVD, ≈44 nm PVD-EP, and ≈118 PVD films, respectively. The morphology of these films after annealing at 500 °C is shown in (d–f). The micrographs show the representative area of the as-deposited and annealed films. The grain size distribution of both as-deposited and annealed films is shown in the inset. The grains of these films are columnar. There is no noticeable porosity in the films. Annealing at 500 °C leads to grain coarsening in most of the characterized films, as shown in (e, f) and Table 1. Credit: Nature Communications (2024). DOI: 10.1038/s41467-024-53441-9

In a leap toward more powerful and efficient computer chips, researchers at the University of Virginia have confirmed a key principle governing heat flow in thin metal films—a critical component in the race to design faster, smaller and more efficient devices.

This work, published in Nature Communications, offers a breakthrough in understanding how thermal conductivity works in metals used within next-generation chips, unlocking possibilities for advancements in technology at scales once thought unattainable.

“As devices continue to shrink, the importance of managing heat becomes paramount,” said lead researcher and mechanical and aerospace engineering Ph.D. student Md. Rafiqul Islam. “Consider high-end gaming consoles or AI-driven data centers, where constant, high-power processing often leads to thermal bottlenecks. Our findings provide a blueprint to mitigate these issues by refining the way heat flows through ultra-thin metals like copper.”

Heat at the nanoscale

Copper, widely used for its excellent conductive properties, faces significant challenges as devices scale down to nanometer dimensions. At such small scales, even the best materials experience a drop in performance due to increased heat—a phenomenon that’s amplified in copper, leading to lower conductivity and efficiency.

To address this, the UVA team focused on a crucial element of thermal science known as Matthiessen’s rule, which they validated in ultra-thin copper films. The rule, which traditionally helps predict how different scattering processes influence electron flow, had never been thoroughly confirmed in nanoscale materials until now.

Using a novel method known as steady-state thermoreflectance (SSTR), the team measured copper’s thermal conductivity and cross-checked it with electrical resistivity data. This direct comparison demonstrated that Matthiessen’s rule, when applied with specific parameters, reliably describes the way heat moves through copper films even at nanoscale thicknesses.

See also  Nanocrystals measure tiny forces on tiny length scales

Cooler, faster and smaller chips

Why does this matter? In the world of very-large-scale integration (VLSI) technology, where circuits are packed into incredibly tight spaces, effective heat management directly translates to improved performance. This research not only points to a future where our devices run cooler but also promises a reduction in the amount of energy lost to heat—a pressing concern for sustainable technology.

By confirming that Matthiessen’s rule holds even at nanoscale dimensions, the team has paved the way for refining materials that interconnect circuits in advanced computer chips, setting a standard for material behavior that manufacturers can rely on.

“Think of it as a roadmap,” said Patrick E. Hopkins, Isam’s adviser and the Whitney Stone Professor of Engineering. “With the validation of this rule, chip designers now have a trusted guide to predict and control how heat will behave in tiny copper films. This is a game-changer for making chips that meet the energy and performance demands of future technologies.”

A collaboration for the future of electronics

The success of this study represents a collaboration between UVA, Intel and the Semiconductor Research Corporation, highlighting the strength of academic-industry partnerships. The findings promise significant applications in the development of next-generation CMOS technology—the backbone of modern electronics. CMOS, or complementary metal-oxide-semiconductor, is the standard technology for building integrated circuits that run everything from computers and phones to automotive and medical devices.

By combining experimental insights with advanced modeling, UVA researchers have opened a door to materials that not only drive more efficient devices but also hold the potential for impactful energy savings across the industry. In a field where every degree of temperature control counts, these insights mark a vital step forward for the electronics industry, making a future of cooler, faster and more sustainable devices more achievable than ever.

See also  A Solution for Soil and Crop Improvement

Provided by
University of Virginia



Source link

circuits confirm Insights Researchers Thermal Tiny
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Paper sensors and smartphone app monitor personal smoke exposure

May 15, 2025

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025

Breathable algae offers a new path

May 13, 2025

A Solution for Soil and Crop Improvement

May 12, 2025

Comments are closed.

Top Articles
Research

Overcoming the Status Quo: Unleashing the Full Potential of Nanomaterials

News

From soot particle filters to renewable fuels: Examining carbon nanoparticle oxidation

News

New research examines corrosion on atomic level

Editors Picks

Paper sensors and smartphone app monitor personal smoke exposure

May 15, 2025

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Scientists discover way to ‘grow’ sub-nanometer sized transistors

July 11, 2024

A new twist on interference patterns

April 6, 2025

Lipid nanoparticle-mRNA regimen reverses inflammation and aids recovery from diabetic wounds in mice

May 27, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel