Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Research proposes three-phase catalytic process for assembling nanoparticles to enhance SERS sensing
News

Research proposes three-phase catalytic process for assembling nanoparticles to enhance SERS sensing

December 16, 2023No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Research proposes three-phase catalytic process for assembling nanoparticles to enhance SERS sensing
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Analysis of the three-phase catassembly process. Credit: Xie Tao

Recently, a research team led by Prof. Yang Liangbao from the Hefei Institutes of Physical Science (HFIPS) of the Chinese Academy of Sciences (CAS) proposed an innovative strategy for assembling small nanoparticles in a three-phase catalytic process, enabling enhanced surface-enhanced Raman scattering (SERS) sensing.

The results were published in Analytical Chemistry.

Currently, there are difficulties in quickly and simply assembling high-density and large-area plasma multilayer films.

To address this issue, researchers introduced the concept of “catassembly” to enhance the rate and control of nanoparticle assembly dynamics. By dropping heated Au sols onto oil chloroform (CHCl3), this approach triggered a rapid assembly of plasmonic multilayers within 15 s at the oil-water-air (O/W/A) interface.

“Interfacial catassembly offered significant advantages by providing large-area, high-density plasmonic hot spots,” said Xie Tao, a member of the team, “thus enabling highly sensitive and stable SERS sensing.”

The plasmonic multilayers consisting of 10 nm gold nanoparticles exhibited remarkable sensitivity, detecting crystal violet molecules at concentrations as low as 1 nM. Moreover, these multilayers demonstrated excellent stability, with a relative standard deviation (RSD) of approximately 10.0%.

Importantly, these results were comparable to those achieved using traditional layer-by-layer assembly with 50 nm gold nanoparticles, challenging the conventional understanding of plasmon properties in small particles.

A new strategy of three-phase catassembling small nanoparticles proposed for SERS sensing
Comparison of SERS sensing with different assembly methods. Credit: Xie Tao

The three-phase catassembly method showcased the exceptional SERS sensitivity and stability of the plasmonic multilayers formed by 10 nm gold nanoparticles, paving the way for the application of small-nanoparticle SERS sensing.

Provided by
Chinese Academy of Sciences



Source link

See also  Elusive 3D printed nanoparticles could lead to new shapeshifting materials
assembling catalytic Enhance nanoparticles process proposes Research Sensing SERS threephase
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Modular protein adapter technology enables exosome-based precision drug delivery

May 6, 2025

Carbon nanotube-based strain sensor can detects deformations in multiple directions

May 4, 2025

Comments are closed.

Top Articles
News

Optimizing Particle Size Analysis for Light-Absorbing Colloidal Suspensions with the BeNano 180 Zeta Pro

News

Engineering non-precious metal electrocatalysts for cost-effective and environmentally responsible water splitting

News

Team uses ‘nanoruler’ to determine threshold for tissue permeability of brain tumors

Editors Picks

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Plasma technology transforms microalgae coating for wounds

October 18, 2023

Modular protein adapter technology enables exosome-based precision drug delivery

May 6, 2025

Researchers discover way to reverse brain aging caused by COVID-19

November 22, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel