Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Ultrathin resonators set new standard for efficient light manipulation

June 7, 2025

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Research highlights the potential of nanopore membranes
News

Research highlights the potential of nanopore membranes

June 7, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Research highlights the potential of nanopore membranes
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Schematic illustration depicting gate voltage control of ion selectivity in a nanopore. Credit: Makusu Tsutsui

Blue energy has the potential to provide a sustainable alternative to fossil fuels. In simple terms, it involves harnessing the energy produced when the ions in a salt solution move from high to low concentrations.

A team including researchers from Osaka University has probed the effect of voltage on the passage of ions through a nanopore membrane to demonstrate greater control of the process.

In a study recently published in ACS Nano the researchers looked at tailoring the flow of ions through the array of nanopores that make up their membrane, and how this control could make applying the technology on a large scale a reality.

If the membranes are made from a charged material, nanopores can cause a current to flow through them by attracting solution ions with the opposite charge. The ions with the same charge can then move through the pore generating the current. This means that the pore material is very important and choosing it has been the means of controlling the flow and current to date.

However, producing the exact same pore structures in a range of different materials to understand their comparative performances is challenging. The researchers therefore decided to investigate another way of tailoring the flow of ions across nanopore membranes.

“Instead of simply using the basic surface charge of our membrane to dictate the flow, we looked at what happens when voltages are applied,” explains study lead author Makusu Tsutsui. “We used a gate electrode embedded across the membrane to control the field through voltage in a similar way to how semiconductor transistors work in conventional circuits.”

See also  Enhancing Catalysis With Co-Cu Alloy Nanoparticles

The researchers found that with no voltage applied there was no charge generated by the flow of cations—positively charged ions—because they were attracted to the negatively charged membrane surface.

However, if different voltages were applied, this performance could be tuned to allow cations to flow, even providing complete selectivity for cations. This led to a six-fold increase in the osmotic energy efficiency.

“By enhancing the charge density at the surface of the nanopores that make up the membrane, we achieved a power density of 15 W/m2,” says senior author Tomoji Kawai. “This is very encouraging in terms of progressing the technology.”

The study findings reveal the potential for scaling nanopore membranes for everyday application. It is hoped that nanopore osmotic power generators will provide a means of bringing blue energy to the mainstream for a more sustainable energy future.

Provided by
Osaka University



Source link

highlights membranes Nanopore Potential Research
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Ultrathin resonators set new standard for efficient light manipulation

June 7, 2025

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Comments are closed.

Top Articles
News

Nanowire-based capture of micro-ribonucleic acids

Experiments show coating rice seedling with nanoscale carbon dots from durian helps rice plants thrive in salty soil

News

Carbon nanotubes have progressed toward energy and health applications, but misconceptions remain

Editors Picks

Ultrathin resonators set new standard for efficient light manipulation

June 7, 2025

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Researchers show that pesticide contamination is more than apple-skin deep

August 17, 2024

Macroscopic C₅₄₀ model offers new way to study sound wave propagation in topological metamaterials

November 19, 2024

Compare Lipid Nanoparticles With and Without RNA

September 28, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel