Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Record-high 3D printing rate reached by acousto-optical scanning
News

Record-high 3D printing rate reached by acousto-optical scanning

October 16, 2023No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Record-high 3D printing rate reached by acousto-optical scanning
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
(a) The schematic of the AOSS. The laser beam is deflected by inertial-free acousto-optic scanning. The wavefront of deflected laser is aberration-free due to the AODy being driven by a non-linear swept signal. Then the laser is switched by a multi-split spatial optical switch, which contains a DOE to split the laser into multi-beams and a digital mask to switch beams individually with different areas adjacent to each other. The switched beams are tightly focused by a high N.A. objective and selectively exposure the resin to produce the patterned polymer. The pattern is displayed on the digital mask. (b) The comparison of the wavefront while the AODy is driven by a linear swept signal and a non-linear swept signal, respectively. (c) The schematic of the printing process of a stone bridge printed by eight-foci AOSS. (d) The SEM image of the printed bridge. The bridge is printed in 130 ms. (e) The color processing area of the SEM image in (d). Different colored areas represent the independent scanning area of 8 focal points. The scanning ranges of each focal spot are connected to form a whole volume. Credit: Binzhang Jiao, Fayu Chen, Yuncheng Liu, Xuhao Fan, Shaoqun Zeng, Qi Dong, Leimin Deng, Hui Gao and Wei Xiong.

Professor Wei Xiong’s group, from the Wuhan National Laboratory for Optoelectronics at Huazhong University of Science and Technology, proposes a pioneering high-speed multi-photon polymerization lithography technique with a record-high 3D printing rate of 7.6 × 107 voxel s−1, which is nearly one order of magnitude higher than earlier scanning multiphoton lithography (MPL).

Published in International Journal of Extreme Manufacturing (IJEM), this technology, based on acousto-optic scanning with spatial-switching (AOSS), not only prints complex 3D micro-nano structures with an accuracy of 212 nm, but also achieves an unprecedented 3D printing rate of 7.6 × 107 voxel/s. It’s like an artist painting a self-portrait in merely five minutes, where every intricate detail, down to each strand of hair, comes vividly to life.

“Processing speed and processing accuracy are important performance parameters for evaluating micro-nano three-dimensional printing technology, and this technology has excellent performance in both aspects,” said Prof. Wei Xiong. “This research provides a feasible technical route for achieving large-scale nano-3D printing in the future.”

The precision manufacturing of intricate and complex three-dimensional micro-nano structures serves as a foundational cornerstone for numerous forefront disciplines. In light of its inherent capacity for true three-dimensional digital fabrication and nanoscale processing resolution beyond the diffraction limit, two-photon lithography(TPL) has consistently remained a focal point of research within the field.

It has now found extensive applications in cutting-edge domains including three-dimensional metamaterial, micro-optical, microelectronic components, and biomedical engineering.

However, despite its high nanoscale resolution capabilities, the limited processing speed of TPL has persistently constrained its potential. For example, the printing of a simple coin can often extend over dozens of hours, a timeframe clearly inadequate for industrial production applications.

See also  Harvard researchers develop ink that enables 3D printing of beating heart tissues

Then Jiao began a series of experimental studies and eventually found the acousto-optic deflector (AOD) as the centerpiece of the process to increase printing speed.

Traditional scanning-based TPL employs mechanical scanning methods like galvanometric mirrors, but their scanning speed is constrained by inertia. In contrast, the acousto-optic deflector (AOD) can achieve inertial-free acousto-optic scanning, resulting in a significant advancement in the speed.

“The motion of a moving car usually includes sequential actions such as braking, turning around, and subsequent acceleration which inherently consumes a substantial amount of time due to the influence of inertia,” said Binzhang Jiao (Ph.D. 22), the first author of the paper.

A galvanometer with inertia is just like a car, where acceleration and deceleration processes are time-consuming. On the other hand, AOD is not constrained by inertia, because it relies on sound waves for scanning. Compared to traditional mechanical mirror scanning, this approach has yielded a 5 to 20-fold increase in laser scanning speed.

Jiao has successfully developed a nonlinear signal modulation technique of the AOD, ensuring the spot size approximates the diffraction limit during high-speed acousto-optic scanning. Concurrently, the integration of diffractive optical elements (DOE) has enabled multi-focal parallel acousto-optic scanning, further enhancing processing throughput. The spatial regions of the multi-focal spots are independently controlled by the spatial optical switch, enabling the fabrication of non-periodic structures.

They demonstrated an eight-focal-point Multiphoton Lithography (MPL) system, achieving voxel size of 212 nm and the voxel printing rate of 7.6 × 107 voxel/s.

“Multiple focal points can be printed separately, as if one person had eight hands,” said Jiao. This voxel printing rate is 8.4 times faster than the fastest mechanically scanned MPL method reported in the past, and 38 times faster than the fastest diffractive scanned MPL method reported. When compared to commercialized MPL methods, the printing speed of this technique can be enhanced by up to 490 times.

See also  A single atom can change the directional profile of the light emitted in scanning tunneling microscopes

Although it is still a long way to go from labs to factory, the team expresses optimism about the future of AOSS. “To increase acousto-optic scanning range, the scanning angle of the acousto-optic scanning can be increased in the future. Accordingly, a higher acousto-optic scanning speed and an increased number of foci can continue to increase the throughput of AOSS,” said Prof. Wei Xiong.

Provided by
International Journal of Extreme Manufacturing


Source link

acoustooptical printing rate reached Recordhigh Scanning
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
Medical

Nanoparticles turbocharge turmeric’s curcumin for enhanced health benefits

Medical

A promising frontier in mRNA therapeutics

News

Unlocking the transformative potential of 2D materials to advance next-generation electronics

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Team uses ‘nanoruler’ to determine threshold for tissue permeability of brain tumors

July 16, 2024

Team identifies a ‘forcefield-like’ defense system in solid tumors and the genetic elements that can switch it off

September 13, 2024

Sussex University’s Breakthrough in Utilizing Martian Nanomaterials

January 18, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel