Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

In vivo 3D printing using sound holds promise for precise drug delivery, wound healing and more

May 18, 2025

Sub-millimeter waveguide shrinks augmented-reality glasses

May 17, 2025

A way to make super-smooth materials

May 17, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Recharging mitochondria—nanoflowers offer a new way to simulate energy production to improve aging ailments
News

Recharging mitochondria—nanoflowers offer a new way to simulate energy production to improve aging ailments

September 28, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Recharging mitochondria—nanoflowers offer a new way to simulate energy production to improve aging ailments
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
A microscopic look into a cell with MoS₂ nanoparticles. Credit: Akhilesh Gaharwar

When we need to recharge, we might take a vacation or relax at the spa. But what if we could recharge at the cellular level, fighting against aging and disease with the microscopic building blocks that make up the human body?

The ability to recharge cells diminishes as humans age or face diseases. Mitochondria are central to energy production. When mitochondrial function declines, it leads to fatigue, tissue degeneration, and accelerated aging. Activities that once required minimal recovery now take far longer, highlighting the role that these organelles play in maintaining vitality and overall health.

While current treatments for ailments related to aging and diseases like type 2 diabetes, Alzheimer’s, and Parkinson’s focus on managing symptoms, Texas A&M researchers have taken a new approach to fight the battle at the source: recharging mitochondrial power through nanotechnology.

Led by Dr. Abhay Singh, a biomedical engineering postdoctoral associate in the Gaharwar Laboratory at Texas A&M, the team has developed molybdenum disulfide (MoS₂) nanoflowers. Named because of their flower-like structure, these nanoparticles contain atomic vacancies that can stimulate mitochondrial regeneration, helping cells generate more energy.

The team published their findings in Nature Communications.

“These findings offer a future where recharging our cells becomes possible, extending healthy lifespans, and improving outcomes for patients with age-related diseases,” said Dr. Akhilesh Gaharwar, Tim and Amy Leach Professor and Presidential Impact Fellow in the Department of Biomedical Engineering at Texas A&M.

Recharging the Powerhouse of the Cell
Nanoparticles interacting with the mitochondria. Credit: Akhilesh Gaharwar

According to Gaharwar, the nanoflowers could offer new treatments for diseases like muscle dystrophy, diabetes, and neurodegenerative disorders by increasing ATP production, mitochondrial DNA, and cellular respiration. They discovered that the atomic vacancies in the nanoflowers stimulate the molecular pathways involved in mitochondrial cell replication.

See also  Carbon nanotubes have progressed toward energy and health applications, but misconceptions remain

Research collaborators include Texas A&M faculty and students. From the Department of Biophysics and Biochemistry, Dr. Vishal Gohil provided insights into the mechanisms that could drive the improvement of mitochondrial function.

“This discovery is unique,” Dr. Gohil said. “We are not just improving mitochondrial function; we are rethinking cellular energy entirely. The potential for regenerative medicine is incredibly exciting.”

Other Department of Biomedical Engineering contributors include Dr. Hatice Ceylan Koydemir, assistant professor, and Dr. Irtisha Singh, an affiliate assistant professor in the Department of Molecular and Cellular Medicine. Singh contributed computational analysis that revealed key pathways and molecular interactions responsible for the energy boost.

“By leveraging advanced computational tools, we can decode the hidden patterns in cellular responses to these nanomaterials, unlocking new possibilities for precision medicine,” Singh said. “It’s like giving cells the right instructions at the molecular level to help them restore their own powerhouses—mitochondria.”

The next steps for the research team include identifying a method for delivering the nanoflowers to human tissue, with the goal of eventual clinical application.

“In science, it’s often the smallest details that lead to the most profound discoveries,” Gaharwar said. “By focusing on the unseen—like atomic vacancies in nanomaterials—we are uncovering new ways to solve big problems. Sometimes, the real breakthroughs come from digging deeper and looking beyond the obvious.”

Provided by
Texas A&M University College of Engineering



Source link

aging ailments energy improve mitochondriananoflowers offer Production Recharging simulate
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

In vivo 3D printing using sound holds promise for precise drug delivery, wound healing and more

May 18, 2025

Sub-millimeter waveguide shrinks augmented-reality glasses

May 17, 2025

A way to make super-smooth materials

May 17, 2025

New tool unlocks the body’s ‘messages in a bottle’ to detect and treat disease

May 16, 2025

Synthetic nanoparticle eyedrops help corneas heal after chemical or inflammatory damage

May 16, 2025

Micropipette uses targeted ion delivery to activate individual neurons

May 15, 2025

Comments are closed.

Top Articles
News

A ferroelectric dimeric liquid crystal with huge spontaneous polarization and dielectric constant at low temperatures

News

New computational methodology to predict the complex formation of interesting nanostructures

News

A new twist on interference patterns

Editors Picks

In vivo 3D printing using sound holds promise for precise drug delivery, wound healing and more

May 18, 2025

Sub-millimeter waveguide shrinks augmented-reality glasses

May 17, 2025

A way to make super-smooth materials

May 17, 2025

New tool unlocks the body’s ‘messages in a bottle’ to detect and treat disease

May 16, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Groundbreaking Discoveries in Photonic Time Crystals

October 12, 2023

Study finds protein reduces toxicity of graphene oxide for drug delivery

August 22, 2024

Magnetic nanoparticles transport drugs deep into tumors to slow cancer growth

March 27, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel