Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Reactant enrichment of nanoreactors boosts hydrogenation performance
News

Reactant enrichment of nanoreactors boosts hydrogenation performance

November 10, 2023No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Reactant enrichment of nanoreactors boosts hydrogenation performance
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
The picture shows mechanism of nanoreactor. The hollow structure of the Pt NPs@MnOx nanoreactor affords a confined space in which reactants enter via directional diffusion driven by the concentration gradient. Then, selective adsorption reduces the internal reactant concentrations, which would promote the in-diffusion of reactants consistently. After the reaction with abundant hydrogen atoms, the weak adsorption of products forces them to leave the nanoreactor in time. Credit: Science China Press

Hollow-structured supported metal catalysts (i.e. nanoreactor catalysts) with encapsulated active sites and well-defined shells provide an ideal place for multicomponents to react or transform cooperatively in an orderly manner, and efficiently have been recognized as one of the most popular catalyst candidates.

Although reactant enrichment has been proposed by investigating the relationship between the catalytic performance and the structure of nanoreactors at the nano level, the study of the enrichment effect at the mesoscale (500-2000nm) is still not comprehensive enough. Constructing the nanoreactor models with active metals inside and outside the hollow nanostructure via different synthetic methods or sequences will inevitably impact the microenvironment around the active sites, as well as the essential active sites.

Additionally, reactant enrichment at the mesoscale level involves many processes such as adsorption and diffusion, which cannot be elaborated by constructing simple computational models at the nanoscale level. Therefore, investigation of the reactant enrichment at the mesoscale level requires maintaining the intrinsic active sites constant when constructing the research model, either with or without enrichment behavior.

In a new research article published in National Science Review, scientists at Dalian Institute of Chemical Physics (DICP), University of Chinese Academy of Sciences, Taiyuan University of Technology, University of Surrey, and Inner Mongolia University present a new nanoreactor catalyst (Pt NPs@MnOx ) with uniformly dispersed Pt nanoparticles encapsulated in an oxygen vacancy-rich MnOx hollow structure to catalyze the selective hydrogenation of CAL and investigate reactant enrichment at the mesoscale level.

The catalytic performance for CAL-selective hydrogenation on Pt NPs@MnOx is 3.4-fold higher than that of Pt NPs&MnOx, which is physically crushed into an open structure. UV–vis, in situ FTIR and IGA measurements demonstrate that the hollow MnOx shell of Pt NPs@MnOx leads to higher CAL uptake.

See also  Quantum properties in atom-thick semiconductors offer new way to detect electrical signals in cells

The mechanism behind this phenomenon may consist of two steps. As the hollow structure creates a confined space, outer reactants would continuously diffuse into the interior of the hollow structure directionally driven by the concentration gradient and/or capillary-like effect (step 1).

Then, these reactants are fixed on the inner surface by adsorption to keep the local low concentration in the confined space. In contrast, Pt NPs&MnOx could not support this directional diffusion process. Moreover, DFT results reveal that CAL is more strongly adsorbed on the surface of Pt NPs@MnOx than Pt NPs&MnOx under excess reactants (step 2).

H2-TPR–MS and finite-element simulation results also demonstrate that the Pt NPs@MnOx nanoreactor creates a stable space with a high concentration and low flow rate to prevent the escape of the reactants (dissociated hydrogen). It is therefore clear that reactant enrichment is derived from the directional diffusion of reactant driven through a local concentration gradient and an increased amount of reactant adsorbed due to the enhanced adsorption ability in hollow MnOx.

The Pt NPs@MnOx catalyst exhibits extremely high catalytic activities and selectivity in a wide range of reaction pressures. A 95% conversion with 95% COL selectivity is obtained on Pt NPs@MnOx at only 0.5 MPa H2 and 40 min, which is a relatively mild condition compared with most reported catalytic systems.

Combining experimental results with density functional theory calculations, the superior cinnamyl alcohol (COL) selectivity originates from the selective adsorption of CAL and the rapid formation and desorption of COL in the MnOx shell. Moreover, the hollow void induces the reactant-enrichment behavior, enhancing the reaction activity.

See also  L-shaped metamaterials can control light direction

These findings offer the possibility of enhancing the catalytic performance at the mesoscale level by designing a rational nanoreactor, rather than reducing the size of the metal particles or modifying them with heteroatoms or ligands at the nanoscale level.

Provided by
Science China Press



Source link

boosts enrichment hydrogenation nanoreactors performance Reactant
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Colloidal Silicon Dioxide – Properties and Applications

Research

Scripps Research Scientists Unveil Promising Solution to Influenza Challenges

Using hybrid nanotubes to enhance cancer treatment with intracellular protein delivery

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

2D materials with ‘twist’ show unexpected electronic behavior that defy theoretical predictions

January 7, 2025

Physicists discover a new optical property that measures the twist in tiny helices

June 25, 2024

Researchers Paving the Way for Greener Wearable Tech with Advanced Polymer Solar Cells

September 15, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel