Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»PPh3’s Movement Challenges Conventional Science
News

PPh3’s Movement Challenges Conventional Science

April 13, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
PPh3’s Movement Challenges Conventional Science
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

Researchers have used neutron spectroscopy to uncover the unique, moonlander-like movement of triphenylphosphine on graphite, advancing our understanding of molecular motion and its applications in material science.Credit: TU Graz

Nanoscale insight into molecular motion on surfaces.

Researchers utilized neutron spectroscopy data from ILL to gain groundbreaking insights into molecular motion at the nanoscale, offering new perspectives that could influence the development of future materials and technologies. The study was recently published in the journal Communications Chemistry.

For years, scientists have been intrigued by how molecules move across surfaces. The process is critical to numerous applications, including catalysis and the manufacturing of nanoscale devices.

Now, using neutron spectroscopy experiments performed at Institut Laue-Langevin (ILL) and advanced theoretical models and computer simulations, a team led by Anton Tamtögl, from Graz University of Technology, unveiled the unique movement of triphenylphosphine (PPh3) molecules on graphite surfaces, a behavior akin to a nanoscopic moonlander.

In fact, PPh3 molecules exhibit a remarkable form of motion, rolling and translating in ways that challenge previous understandings. This moonlander-like motion seems to be facilitated by their unique geometry and three-point binding with the surface.

“Delving into the complex world of molecular motion on graphite surfaces has been an exciting journey,” reveals Anton Tamtögl, adding: “Measurements and simulation unveiled a sophisticated motion and ‘dance’ of the molecules, providing us with a deeper understanding of surface dynamics and opening up new horizons for materials science and nanotechnology.”


Video illustrating the motion of a single triphenylphosphine molecule over graphite in a top view, as extracted from a molecular dynamics simulation at a temperature of 300 K. Credit: TU Graz

The Role of Triphenylphosphine in Industry

Triphenylphosphine is an important molecule for the synthesis of organic compounds and nanoparticles with numerous industrial applications. The molecule exhibits a peculiar geometry: PPh3 is pyramidal with a propeller-like arrangement of its three cyclic groups of atoms (see image).

See also  X-ray Imaging Sheds Light on Fusion Material Challenges

Neutrons offer unique possibilities in the study of materials’ structure and dynamics. In a typical experiment, neutrons scattered off the sample are measured as a function of the change in their direction and energy. Due to their low energy neutrons are an excellent probe for studying low energy excitations such as molecular rotations and diffusion. Neutron spectroscopy measurements were performed at ILL Instruments IN5 (TOF spectrometer) and IN11 (neutron spin-echo spectrometer).

Molecular Moonlander

Illustration showing a single triphenylphosphine molecule over graphite. Credit: TU Graz

“It’s amazing to see how ILL’s powerful spectrometers allow us to follow the dynamics of these fascinating molecular systems even if the amount of sample is tiny,“ says ILL scientist Peter Fouquet, explaining that “Neutron beams do not destroy these sensitive samples and allow for a perfect comparison with computer simulations.“

The study shows that PPh3 molecules interact with the graphite surface in a manner that allows them to move with surprisingly low energy barriers. The movement is characterized by rotations and translations (jump-motions) of the molecules.While rotations and intramolecular motion dominate up to about 300 K, the molecules follow an additional translational jump-motion across the surface from 350-500 K.

Understanding the detailed mechanisms of molecular motion at the nanoscale opens up new avenues for the fabrication of advanced materials with tailored properties. Apart from the fundamental interest, the movement of PPh3 and related compounds on graphite surfaces is of great importance for applications.

Reference: “Molecular motion of a nanoscopic moonlander via translations and rotations of triphenylphosphine on graphite” by Anton Tamtögl, Marco Sacchi, Victoria Schwab, Michael M. Koza and Peter Fouquet, 6 April 2024, Communications Chemistry.
DOI: 10.1038/s42004-024-01158-7

See also  Scientists learn how to make nanotubes that point in one direction


Source link

Challenges Conventional Movement PPh3s Science
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Comments are closed.

Top Articles
News

Scientists use SERS technology to accurately monitor single-molecule diffusion behavior

Medical

Breakthrough nano-shield blocks selective allergic reactions

News

In quest to prevent debilitating traumatic brain injuries, new foam material rises to the top

Editors Picks

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

New contact lenses allow wearers to see in the near-infrared

May 30, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Revolutionizing SOFCs with Thin-Film Electrolyte Innovations

December 11, 2024

Researchers grow a twisted multilayer crystal structure for next-gen materials

February 1, 2024

A new plasma-based technological design boosts graphene production by more than 22%

October 18, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel