Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»Nanomaterials»Physicists track the mass and temperature of a levitated nanoparticle
Nanomaterials

Physicists track the mass and temperature of a levitated nanoparticle

August 13, 2023No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

Physicists in China have developed a technique for simultaneously measuring the mass and temperature of a single nanoparticle. The technique, which involves levitating the nanoparticle in an optical trap, applying a sinusoidal electrostatic force to it and analysing its subsequent trajectory, will help scientists determine how the properties of nanoparticles change in response to changes in temperature.

Nanoparticles are found in a wide range of products, including cosmetics, paints, food products and pharmaceuticals. To optimize their performance in these diverse applications, it is essential to characterize and control their properties, but current methods of doing this have significant limitations.

The mass of a nanoparticle, for example, is usually estimated based on density data and particle size analyses. The values obtained using this approach are not very accurate, however, and the method does not provide information on the properties of individual nanoparticles or the differences between them.

In recent years, researchers have developed several techniques that aim improve on these estimations. Of these techniques, schemes that rely on optical levitation are among the most promising. In a typical levitation set-up, a calibrated optical field is used as a reference to infer the mass of a particle down to the femtogram (10-18 kg) range. Even this improved technique, however, does not provide any information about how a nanoparticle’s mass varies with temperature – an important parameter since the mass of most materials changes as their temperature increases.

A reference scale

Physicists at the University of Science and Technology of China have now shown that they can track variations in mass, centre-of-mass temperature and other properties of a 165-nm diameter silica particle by using a known AC driving force as a reference scale. Their technique relies on the fact that the particle’s charge and the electric field are calibrated at the position at which the particle is levitated in an optical potential trap. This approach allows the precise magnitude of the electric force acting on the particle to be determined.

See also  Blocking electromagnetic interference opens channels for optical communications

“The mass of the particle is then obtained by analysing the trajectory of the particle when subjected to the known electric field force,” explains team member Yu Zheng.  “The temperature of the particle is determined using the thus-calculated mass and a thermal motion scale. This scale is governed by the equipartition theorem, which in classical statistical mechanics relates the temperature of a system to its overall energy.”

Using this technique, the researchers were able to observe a sudden loss of the nanoparticle’s mass when the air pressure falls below a certain point. This phenomenon cannot be explained by the simple effect of water molecules desorbing from the nanoparticles’ surfaces and thus cannot be observed by conventional desorption analysis tools, such as thermal desorption spectrometry.

The researchers now plan to add a heating laser to their set up so they can control the heating of the levitated nanoparticles more precisely. “This will enable us to thermogravimetrically analyse individual particles,” Zheng tells Physics World. “Indeed, preliminary findings from our study have already shown that the variations in mass of an individual nanoparticle with temperature reveal nuanced information that conventional thermogravimetric analyses fail to capture.”

The present study is detailed in Chinese Physics B.

Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Nanosensor predicts risk of complications in early pregnancy

March 7, 2025

Nanoparticles demonstrate new and unexpected mechanism of coronavirus disinfection

February 11, 2025

Two-faced graphene nanoribbons could make the first purely carbon-based ferromagnets

February 6, 2025

Nanocrystals measure tiny forces on tiny length scales

January 22, 2025

Nanocrystal shape affects molecular binding

November 1, 2024

Enabling the future: printable sensors for a sustainable, intelligent world

October 1, 2024

Comments are closed.

Top Articles
News

New nanosensors make diagnostic procedures more sensitive

Research

Hidden Costs in Currency Transfers: How Banks and Brokers Are Charging You More

News

Scientists develop antiviral color nanocoating technology

Editors Picks

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

New method uses nanofibrils on magnetic microparticles to isolate HIV particles

April 6, 2024

Nanoimprint Lithography: Methods and Material Requirements

June 17, 2024

Utilizing Back-Gate Voltage Biases for 2D Materials

September 8, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel