Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»Nanomaterials»Photonic crystals formed over time in ancient Roman glass
Nanomaterials

Photonic crystals formed over time in ancient Roman glass

October 23, 2023No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Photonic crystals formed over time in ancient Roman glass
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

A distinctive iridescent patina on an ancient Roman glass fragment stems from a photonic crystal structure that formed naturally within the material over time, say researchers in Italy and the US. The unusual crystal contains alternating layers of high- and low-density silica layers that resemble reflectors known as Bragg stacks, and their presence makes the fragment’s surface shine like a gold mirror. As well as revealing the nanoscale characteristics of ancient glass, the discovery is an example of naturally-nanofabricated complex photonic architecture – something that could inspire new strategies for producing different glass compositions by artificially ageing them.

Ancient glass artefacts often have iridescent patinas that form gradually by corrosion. This natural process involves the silica particles in the glass repeatedly dissolving and reprecipitating out. The final composition and structure of the patina depends on two factors: reactions between the original constituents in the glass and chemicals in the water-laden soil, and the pH of the water. These reactions restructure the glass into nanometre- to micron-thick layers, or lamellae, that are formed by nanoparticles with regularly alternating packing density. It is these lamellae that give the patina its shine.

In their study, Giulia Guidetti of Tufts University’s Silklab and Roberta Zanini and Giulia Franceschin at the Italian Institute of Technology’s Center for Cultural Heritage Technology (CCHT) chose to analyse a fragment of Roman glass recovered near the ancient city of Aquileia, which is about 100 km northeast of Venice. Thanks to chemical analyses obtained using laser ablation mass spectroscopy, they confirmed the glass was made of silica-soda-lime (which is typical of glass produced in the Roman empire) and dated the sample to between the first century BCE and the first century CE. They then used optical and electron microscopy to characterize the composition of the millimetre-thick patina and found that it shines brightly and reflects light over a broad range of wavelengths.

See also  Nanocrystals measure tiny forces on tiny length scales

High-reflectivity Bragg stacks

The researchers say these properties come from stacks of highly ordered nanostructured domains in the patina that individually behave like high-reflectivity Bragg stacks. The collective behaviour of these domains implies that the originally amorphous material has transformed into well-organized photonic crystals through long-term corrosion processes and self-assembly of the silica nanoparticles in the glass. Indeed, apart from the patina, the bulk of the glass remains in its original form and is dark green in colour.

“It is remarkable that such a sophisticated nanostructure, something that photonics researchers and engineers spend a lot of time and effort manufacturing in clean rooms, has formed by being buried in soil for thousands of years,” says Fiorenzo Omenetto, a biomechanical engineer and head of Silklab. “Scientifically, speaking, this process of corrosion may be an inspiration for a different approach to grow ‘structural colours’ and mirrors, provided that the glass transformation was significantly accelerated, of course.”

Above all, though, he highlights “the joy of making such an unexpected discovery. This sample was literally sparkling on a shelf, and attracted our attention as we walked past.”

The researchers, who report their work in PNAS, are now working on identifying other ancient glass artefacts with similar characteristics. “While iridescent patinas on ancient glass are relatively common, this particular fragment, characterized as a photonic crystal, presents a unique case,” CCHT director Arianna Traviglia tells Physics World. “Our objective is to further study this phenomenon and understand the environmental conditions that facilitate its occurrence.”

Source link

Ancient Crystals formed glass Photonic Roman time
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Earth’s magnetic field impact on fluid flow revealed for the first time

April 24, 2025

Nanostructuring MOF crystals unlocks their potential, retaining electrical properties with enhanced sensitivity

April 13, 2025

Light-induced symmetry changes in tiny crystals allow researchers to create materials with tailored properties

March 29, 2025

Nanosensor predicts risk of complications in early pregnancy

March 7, 2025

Nanoparticles demonstrate new and unexpected mechanism of coronavirus disinfection

February 11, 2025

Two-faced graphene nanoribbons could make the first purely carbon-based ferromagnets

February 6, 2025

Comments are closed.

Top Articles
News

Innovative microscopy reveals amyloid architecture, may give insights into neurodegenerative disease

News

A new fullertube molecule is found

News

New research examines corrosion on atomic level

Editors Picks

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Selective operation of enhancement and depletion modes of nanoscale field-effect transistors

March 15, 2024

3D printing technology achieves precision light control for structural coloration

August 16, 2023

Antimicrobial Nanoparticles: Mechanisms and Applications

March 1, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel