Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

New contact lenses allow wearers to see in the near-infrared

May 30, 2025

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Paper-based sensor offers rapid cardiac diagnostics in 15 minutes
News

Paper-based sensor offers rapid cardiac diagnostics in 15 minutes

October 16, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Paper-based sensor offers rapid cardiac diagnostics in 15 minutes
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Deep learning-enhanced paper-based vertical flow assay for high-sensitivity troponin detection using nanoparticle amplification. Credit: Ozcan Lab @UCLA

In a significant advancement for point-of-care medical diagnostics, a team of researchers from UCLA has introduced a deep learning-enhanced, paper-based vertical flow assay (VFA) capable of detecting cardiac troponin I (cTnI) with high sensitivity. The innovative assay holds the potential to democratize access to rapid and reliable cardiac diagnostics, particularly in resource-limited settings.

Cardiovascular diseases (CVDs) remain the leading cause of death worldwide, accounting for over 19 million fatalities annually. Early detection of acute myocardial infarction (AMI), commonly known as a heart attack, is essential for improving patient outcomes and reducing mortality rates. However, the high costs and infrastructure requirements associated with traditional laboratory-based diagnostic equipment often limit access to high-quality care, particularly in low- and middle-income regions.

To address this challenge, UCLA researchers developed a high-sensitivity vertical flow assay (hs-VFA) that combines the precision of traditional laboratory testing with the convenience and affordability of point-of-care technologies. Their findings, detailed in a recently published paper in ACS Nano, demonstrate that this innovative platform can accurately quantify cTnI levels in just 15 minutes using a small sample of serum, making it ideal for rapid diagnostics in emergency settings or remote locations.

The core of this platform lies in the integration of deep learning algorithms with cutting-edge nanoparticle amplification chemistry. The hs-VFA system uses time-lapse imaging and computational analysis to enhance the detection of cTnI—a key biomarker for cardiac damage—achieving a detection limit as low as 0.2 picograms per milliliter (pg/mL). This level of sensitivity surpasses current point-of-care devices by a significant margin and meets the clinical requirements for high-sensitivity troponin testing, which is essential for the early diagnosis of AMI.

See also  The Future of On-chip Optical Communication

“We are excited to introduce this low-cost, portable solution that bridges the gap between central laboratory diagnostics and point-of-care testing,” said Professor Aydogan Ozcan, the senior author of the study and the Volgenau Chair for Engineering Innovation at UCLA. “Our paper-based platform, powered by deep learning, offers an effective alternative to the bulky, expensive instruments currently used in hospitals. It holds the promise of bringing advanced cardiac diagnostics to underserved populations globally.”

The hs-VFA system operates in two stages: an initial immunoassay phase followed by a signal amplification phase. In the immunoassay phase, the test uses gold nanoparticle conjugates to bind to cTnI in the serum. In the signal amplification phase, gold ions are catalyzed by nanoparticles, resulting in a color change that is captured by a custom-designed, portable reader. Deep learning algorithms then analyze these time-lapse images to enhance the sensitivity and accuracy of cTnI detection.

In rigorous testing using both spiked and clinical serum samples, the hs-VFA demonstrated high precision with a coefficient of variation (CV) of less than 7%. It also exhibited a strong correlation with gold-standard laboratory analyzers. Importantly, the hs-VFA also demonstrated an extensive dynamic range, covering cTnI concentrations from 0.2 pg/mL to 100 nanograms per milliliter (ng/mL). This range makes it suitable not only for diagnosing heart attacks but also for monitoring at-risk patients over time.

The cost-effectiveness of this platform is another key highlight. The paper-based assay costs less than $4 per test, while the portable reader, designed using a Raspberry Pi computer and off-the-shelf components, costs approximately $170 per unit. This affordability is crucial for expanding access to high-quality diagnostics in low-resource settings, where traditional laboratory infrastructure may be unavailable.

See also  Light-driven hybrid nanoreactor offers cost-effective hydrogen production

“Our goal was to design a system that could be used not only in hospitals but also in clinics, pharmacies, and even in ambulances,” said Dr. Gyeo-Re Han, the first author of the study and a postdoctoral researcher at UCLA. “The ability to rapidly detect and quantify troponin levels in diverse settings could enable faster, more effective treatment of heart attack patients, particularly during the critical prehospital phase of care.”

Beyond cardiac diagnostics, the researchers believe the hs-VFA platform could be adapted for other critical low-abundance biomarkers, broadening its potential applications to various areas of medical diagnostics. The portability, simplicity, and affordability of the platform position it as a viable alternative to centralized laboratory testing for many conditions, offering hope for improved health outcomes on a global scale.

This work was made possible through a collaboration between the UCLA Departments of Electrical & Computer Engineering (Ozcan Lab), Bioengineering (Di Carlo Lab), and the California NanoSystems Institute (CNSI).

Provided by
UCLA Engineering Institute for Technology Advancement



Source link

cardiac Diagnostics minutes offers Paperbased Rapid Sensor
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Nanoparticle-cell interface enables electromagnetic wireless programming of mammalian transgene expression

May 28, 2025

Finely-tuned TiO₂ nanorod arrays enhance solar cell efficiency

May 28, 2025

Different DLS-Based Systems Can Give Us Different Size Results

May 27, 2025

Comments are closed.

Top Articles
News

Using metal ion-linked nanostructures to improve immune response and boost breast tumor treatment

News

Breakthroughs in Ultrafast Electron Dynamics

New nano-microscope enables simultaneous measurement of nano-composite material properties

Editors Picks

New contact lenses allow wearers to see in the near-infrared

May 30, 2025

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Molybdenene – Properties and Applications

December 20, 2023

Novel host-guest assembly provides enhanced reactivity

March 20, 2024

Nanomechanical Properties in Battery Materials Performance

September 26, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel