Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Novel toxic gas sensor improves the limit of nitrogen dioxide detection
News

Novel toxic gas sensor improves the limit of nitrogen dioxide detection

January 7, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Novel toxic gas sensor improves the limit of nitrogen dioxide detection
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Performance evaluation results of the ultra-sensitive gas sensor developed by KRISS. Credit: Korea Research Institute of Standards and Science (KRISS)

Researchers at the Korea Research Institute of Standards and Science developed a toxic gas sensor with the world’s highest sensitivity. This sensor can precisely monitor nitrogen dioxide (NO2), a toxic gas in the atmosphere, at room temperature with low power consumption and ultra-high sensitivity. It can be applied to diverse fields, such as detection of residual gases during semiconductor manufacturing process and research on electrolysis catalysts.

NO2, produced by the high-temperature combustion of fossil fuels and primarily emitted through automobile exhaust or factory smoke, contributes to an increase in mortality due to air pollution. In South Korea, the annual average concentration of NO2 in the air is regulated to be 30 ppb or lower by presidential decree. Highly sensitive sensors, therefore, are required to accurately detect gases at extremely low concentrations.

In recent times, the use of toxic gases that are potentially fatal to humans has been on the rise due to the development of high-tech industries, including semiconductor manufacturing. While some laboratories and factories have adopted semiconductor-type sensors for safety, the challenge lies in their low response sensitivity, making them unable to detect toxic gases that may even be perceptible to the human nose. To increase the sensitivity, they consume a lot of energy in the end because they must operate at high temperatures.

The newly developed sensor, a next-generation semiconductor-type toxic gas sensor based on advanced materials, exhibits significantly improved performance and usability compared to conventional sensors. With its outstanding sensitivity to chemical reactions, the new sensor can detect NO2 much more sensitively than previously reported semiconductor-type sensors, a sensitivity that is 60 times higher. Moreover, the novel sensor consumes minimal power operating at room temperature, and its optimal semiconductor manufacturing process enables large-area synthesis at low temperatures, thereby reducing fabrication costs.

A novel toxic gas sensor by KRISS improves the limit of detection
Tidal process for creating 3D MoS2 nano-branches. The structural transformation of MoS2 into a 3D tree- branch shape can be observed over the synthesis time. Credit: Korea Research Institute of Standards and Science (KRISS)

The key to the technology lies in the MoS2 nanobranch material developed by KRISS. Unlike the conventional 2D flat structure of MoS2, this material is synthesized in a 3D structure resembling tree branches, thereby enhancing the sensitivity. Besides its strength of uniform material synthesis on a large area, it can create a 3D structure by adjusting the carbon ratio in the raw material without additional processes.

See also  Generation of lossy mode resonances using perovskite nanofilms

The KRISS Semiconductor Integrated Metrology Team has experimentally demonstrated that their gas sensor can detect NO2 in the atmosphere at concentrations as low as 5 ppb. The calculated detection limit of the sensor is 1.58 ppt, marking the world’s highest level of sensitivity.

This achievement enables precise monitoring of NO2 in the atmosphere with low power consumption. The sensor not only saves time and cost but also offers excellent resolution. It is expected to contribute to research on improving atmospheric conditions by detecting annual average concentrations of NO2 and monitoring real-time changes.

Another characteristic of this technology is its ability to adjust the carbon content in the raw material during the material synthesis stage, thereby altering the electrochemical properties. This can be utilized to develop sensors capable of detecting gases other than NO2, such as residual gases produced during the semiconductor manufacturing processes. The excellent chemical reactivity of the material can also be exploited to enhance the performance of electrolysis catalysts for hydrogen production.

Dr. Jihun Mun, a senior researcher of the KRISS Semiconductor Integrated Metrology Team, said, “This technology, which overcomes the limitations of conventional gas sensors, will not only meet government regulations but also facilitate precise monitoring of domestic atmospheric conditions. We will continue follow-up research so that this technology can be applied to the development of various toxic gas sensors and catalysts, extending beyond the monitoring of NO2 in the atmosphere.”

Provided by
National Research Council of Science and Technology



Source link

detection Dioxide gas improves limit nitrogen Sensor toxic
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Modular protein adapter technology enables exosome-based precision drug delivery

May 6, 2025

Comments are closed.

Top Articles
News

Active Pharmaceutical Ingredients, Injectables, and Proteins

News

Exploring graphene’s topological bands in super-moirĂ© structures

News

Scientists develop deep learning-based biosensing platform to better count viral particles

Editors Picks

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Development of organic semiconductors featuring ultrafast electrons

April 29, 2024

Scripps Research Scientists Unveil Promising Solution to Influenza Challenges

December 28, 2023

Scientists develop 3D-printed epifluidic electronic skin

October 10, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel