Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Novel fabrication technique takes transition metal telluride nanosheets from lab to mass production
News

Novel fabrication technique takes transition metal telluride nanosheets from lab to mass production

April 12, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Novel fabrication technique takes transition metal telluride nanosheets from lab to mass production
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Researchers have devised a fabrication technique for one of the most exciting 2D materials in recent years that may finally take the compound from a lab bench to a range of industrial applications. Credit: DICP

Transition metal telluride nanosheets have shown enormous promise for fundamental research and other applications across a rainbow of different fields, but until now, mass fabrication has been impossible, leaving the material as something of a laboratory curiosity rather than an industrial reality.

But a team of researchers has recently developed a novel fabrication technique—the use of chemical solutions to peel off thin layers from their parent compounds, creating atomically thin sheets—that looks set to deliver on the ultra-thin substance’s promise finally.

The researchers describe their fabrication technique in a study published in Nature.

In the world of ultra-thin or ‘two-dimensional’ materials—those containing just a single layer of atoms—transition metal telluride (TMT) nanosheets have, in recent years, caused great excitement among chemists and materials scientists for their particularly unusual properties.

These compounds, made of tellurium and any of the elements in the ‘middle’ of the periodic table (groups 3-12), enjoy a range of states from semi-metallic to semiconducting, insulating, and superconducting and even more exotic states, as well as magnetic and unique catalytic activity.

These properties offer a range of potential applications across electronics, energy storage, catalysis, and sensing. In particular, TMT nanosheets are being explored as novel electrode materials in batteries and supercapacitors—essential for the clean transition—due to their high conductivity and large surface area.

TMT nanosheets can also be used as electrocatalysts for lithium-oxygen batteries, improving their efficiency and performance. Other potential applications in emerging technologies include photovoltaics and thermoelectrics, hydrogen production, and filtration and separation. They have even been found to display interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance.

See also  Scientists explore the strategies of defects and nanostructure fabrication for promoting piezocatalytic activity

“The list of industries that would enjoy significant efficiency improvements from the mass production of TMT nanosheets is extremely long,” said team leader WU Zhong-Shuai, a chemist with the Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences. “This is why this 2D material is potentially so exciting.”

Unfortunately, despite various attempts at exfoliation of high-quality TMT nanosheets, preserving high crystallinity while achieving large nanosheet size and ultrathin feature continues to be a significant challenge. The methods devised so far are not scalable due to long processing times. They also often require toxic chemicals. Thus, the properties of TMT nanosheets have remained an interesting laboratory phenomenon that cannot quite make the leap to mass production and industrial application.

The team finally cracked this problem via a simplified process of lithiation, hydrolysis and finally, the nanosheet exfoliation.

First, a bulk quantity of metal telluride crystals was prepared using chemical vapor transport—a method commonly used in chemistry to transport solid compounds from one location to another using a carrier gas. When the reaction vessel is heated, the transporting agent vaporizes and carries the solid compound with it as a vapor.

The vapor travels through the reaction vessel and may encounter a cooler surface, where the compound can deposit and form crystals. This allows for the controlled growth of crystals or very thin films of the desired compound. In this case, the prepared telluride crystals are then mixed with lithium borohydride. This process involves the placing of lithium ions in between the layers of the metal telluride crystals, leading to the formation of an intermediate, ‘lithiated’ compound.

See also  Scientists discover new method for generating metal nanoparticles to use as catalysts

The lithiated intermediate compound is then rapidly drenched with water, which results in “exfoliation,” or stripping of the lithiated metal telluride crystals into nanosheets in seconds.

Finally, the exfoliated metal telluride nanosheets are collected and characterized based on their shape and size, allowing them to be further processed into different forms, such as films, inks, and composites, depending on the desired application.

The whole process takes just ten minutes for the lithiation and seconds for the hydrolysis. The technique is capable of producing high-quality TMT nanosheets of varying desired thicknesses with very high yields.

When testing the nanosheets, the researchers found that their charge storage, high-rate capacity, and stability made them promising for applications in lithium batteries and micro-supercapacitors.

They believe that their technique is essentially ready for commercialization, but they also want to conduct further studies to characterize the properties and behavior of their nanosheets, as well as further refine and optimize the lithiation and exfoliation stages.

Provided by
Chinese Academy of Sciences



Source link

fabrication lab Mass metal Nanosheets Production Takes Technique telluride Transition
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Comments are closed.

Top Articles
Research

Metal Organic Frameworks (MOFs): An Advanced Material That’s Finally Coming of Age for Nanoscale Commercialisation

Medical

New electrospinning innovations transform wearable and implantable medical devices

Research

The Roadmap to Integrating Sensing Capabilities into Daily Life

Editors Picks

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Using metal ion-linked nanostructures to improve immune response and boost breast tumor treatment

September 6, 2024

New grant aims to develop rapid biosensors for detecting African swine fever

October 17, 2024

Researchers develop first heat map for individual red blood cells

March 15, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel