Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»New strategies enhance stability of metal nanoparticles in green hydrogen production
News

New strategies enhance stability of metal nanoparticles in green hydrogen production

December 31, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
New strategies enhance stability of metal nanoparticles in green hydrogen production
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Schematic illustration of a metal nanoparticle on an oxide support. Credit: Nature Communications (2024). DOI: 10.1038/s41467-024-54008-4

Efficient and durable low-cost catalysts are essential for green hydrogen production and related chemical fuel production, both vital technologies for the transition to renewable energy. Research in this field increasingly focuses on metal exsolution reactions to fabricate catalysts with improved properties.

A new study led by Forschungszentrum Jülich, in collaboration with international institutions, has revealed how oxygen vacancies in oxide materials influence the stability of metal nanoparticles on the surface of such materials, which are critical to catalyst performance. The findings, published in Nature Communications, reveal practical strategies to enhance catalyst durability and make green hydrogen production more competitive.

The study focused on the process of metal exsolution, a relatively new procedure where metal dopants initially part of the oxide lattice in oxide materials are released during thermal reduction to form nanoparticles on the oxide surface. These nanoparticles, in combination with the oxide substrate, create highly active interfaces that are crucial for catalyzing electrochemical reactions, such as water splitting for green hydrogen production.

The researchers demonstrate that oxygen vacancies—defects in the oxide crystal lattice where oxygen atoms are missing—play a pivotal role in nanoparticle stability. Oxides with high concentrations of oxygen vacancies that are used, for example, in fuel cells and electrolyzer cells, exhibit increased surface mobility of nanoparticles at elevated temperatures, which are typical for operation, causing them to coalesce into larger particles.

This coalescence reduces the density of active sites, thereby diminishing the catalyst’s efficiency. Conversely, oxides with lower concentrations of oxygen vacancies stabilize the nanoparticles, preventing coalescence and maintaining catalytic activity over time.

See also  What are Mesoporous Silica Nanoparticles?

The team also identified a simple yet effective method to mitigate these effects. Introducing water vapor into the reaction environment slightly increases oxygen partial pressure, reducing the number of oxygen vacancies at the interface between the oxide and nanoparticles.

This adjustment enhances nanoparticle stability and prolongs catalyst durability. Additionally, modifying the composition of the oxide material to inherently decrease oxygen vacancy concentration provides another viable approach for achieving long-term stability.

Social and scientific relevance

These findings have significant implications for the development of renewable energy systems. Exsolution catalysts are being discussed as promising candidates to replace conventional materials, particularly in solid oxide cells.

Solid oxide cells are critical for both producing green hydrogen, an essential energy carrier for storage and transport, and converting it back into electricity at the highest efficiency levels. The durability of catalysts directly impacts the economic and operational feasibility of these devices.

Although metal exsolution reactions offer a promising approach for developing catalysts with enhanced properties, the limited durability of these catalysts—prone to structural and chemical degradation under operating conditions—remains a significant barrier to their practical application in green energy technologies. By addressing the issue of nanoparticle coalescence, this research could lead to advances in the viability of these novel catalysts.

The study provides actionable strategies for improving catalyst durability through adjustments in reaction conditions and material compositions and represents a significant step forward in the development of technologies for renewable energies.

Provided by
Forschungszentrum Juelich



Source link

Enhance Green Hydrogen metal nanoparticles Production stability strategies
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Comments are closed.

Top Articles
News

Optimizing EV Lubricants via Tribotesting

News

Smart textile can sense light, pressure, smell and even taste

Research

Unveiling the Impact of Nanotech Innovation and Funding

Editors Picks

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

The World Nano Foundation Unveils Groundbreaking Whitepaper on Nanotechnology’s Impact on Sustainable Agriculture

August 11, 2023

Envisioning a More Sustainable Future

October 11, 2023

Highly tunable biotemplating method expands nanostructure synthesis options

January 20, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel