Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»New rapid prototyping method for microscale spiral devices
News

New rapid prototyping method for microscale spiral devices

February 4, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
New rapid prototyping method for microscale spiral devices
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
The microfluidic device-based fibers with 3D spiral channels and simulation study of its primary flow. a Schematics of the microfluidic device. The simulation revealed the shifting of the velocity profile of the primary flow towards the outer wall with Re = 36 in b and Re = 455 in c. A Dean vortex has emerged at a high De = 117. Credit: Microsystems & Nanoengineering (2024). DOI: 10.1038/s41378-023-00642-9

A team of researchers from Tohoku University and Okinawa Institute of Science and Technology (OIST) has achieved significant advancement in the field of microfluidics, allowing for precise and efficient manipulation of fluids in three-dimensional microscale environments. This work opens up new possibilities for bioanalytical applications, such as cell separations in the realm of medical diagnostics.

Details of their breakthrough were published in the journal Microsystems & Nanoengineering on January 22, 2024.

Microfluidic devices are designed to handle minuscule fluid volumes, allowing researchers to perform analyses and processes with remarkable precision and efficiency.

In recent years, microfluidic technology has rapidly advanced across various fields, including medicine, biology, and chemistry. Among them, three-dimensional spiral microfluidic devices stand out as game-changers. Their intricate corkscrew-like design allows for precise fluid control, efficient particle separation, and reagent mixing. However, their potential to revolutionize bioanalytical applications is hindered by the current challenges in fabrication. The process is time-consuming and costly, and existing manufacturing techniques limit material options and structural configurations.

To overcome these limitations, an interdisciplinary team from Tohoku University and OIST has introduced a miniaturized rotational thermal drawing process (mini-rTDP), drawing inspiration from traditional Japanese candy-making techniques—the fabrication of Kintaro-ame.

Their innovative approach involves rotating the materials during thermal stretching to create intricate three-dimensional structures within fibers. This process is highly versatile, accommodating a wide range of materials that can deform when heated, unlocking endless possibilities for combining diverse materials.

“Mini-rTDP facilitates rapid-prototyping of three-dimensional microfluidic systems, ideal for precise biofluid manipulation,” says Yuanyuan Guo, an associate professor at Tohoku University’s Frontier Research Institute for Interdisciplinary Sciences (FRIS).

See also  Could Nanotechnology Be Used to Improve Brain Implants?

“Mini-rTDP involves creating a molded polymer preform containing channels, which are subsequently stretched and heated to generate microfluidic channels within a fiber. These channels can then be further rotated to shape three-dimensional spiral configurations”, explains Shunsuke Kato, a junior researcher at FRIS and the first author of the paper.

In collaboration with Amy Shen, leader of the Micro/Bio/Nanofluidics Unit at OIST, the interdisciplinary Tohoku-OIST team conducted both simulations and experiments to visualize fluid flows within the spiral structures. Daniel Carlson from Shen’s team says, “We have confirmed the presence of Dean vortices, a type of rotational flow occurring in curved channels, in our devices, thus affirming their potential for significantly enhancing cell and particle separation efficiency.”

“The rapid prototyping of three-dimensional spiral microfluidics using mini-rTDP represents a remarkable advancement in the field of microfluidics. This technology offers unparalleled versatility, precision, and the potential to catalyze transformative changes across various industries,” says Shen.

“Furthermore, we are actively pursuing the integration of microfluidic channels with functionalities such as electrodes, biosensors, and actuators directly into fibers. This endeavor has the potential to revolutionize Lab-on-Chip bioanalytical technologies,” said Guo.

This research is a testament to the collaborative efforts of the OIST SHIKA program and the matching funds provided by Tohoku University, highlighting the strong partnership and synergy between these two institutions.

Provided by
Tohoku University



Source link

Devices method microscale prototyping Rapid spiral
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Comments are closed.

Top Articles
News

Multi-omics approach reveals nanoplastic toxicity in aquatic life

News

Humans to Provide Energy Source for Smart Devices of the Future

News

New strategy for high-performance cathodes in aqueous zinc ion batteries

Editors Picks

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

New electrochemical water splitting method offers fast, sustainable method for hydrogen production

October 30, 2024

Resistivity Metrology for Sputtered ITO Thin Films

April 3, 2025

A new fullertube molecule is found

April 5, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel